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Motivation

Many real-world problems do not �t into the tabular format of machine learning.
Instead, many problems involve data that is naturally represented as graphs:

(bio)molecular structures,

tra�c networks,

scene graphs,

social networks,

computer programs,

... and many more!
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https://arxiv.org/abs/1901.00596


The case of molecules

Molecules are naturally represented as graphs, where nodes are atoms and
edges are bonds.

Features can be associated with each node and edge, e.g. the atomic number,
the number of bonds, etc.

―
Credits: Petar Veličković, CST Wednesday Seminar, 2021. 4 / 47

https://petar-v.com/talks/GNN-Wednesday.pdf


An interesting problem is to predict whether a molecule is a potent drug. This
can be formulated as a binary classi�cation problem, where

the input is a graph representation of the molecule and

the output is a binary label (e.g., whether the drug will inhibit bacterial
growth).

―
Credits: Petar Veličković, CST Wednesday Seminar, 2021. 5 / 47

https://petar-v.com/talks/GNN-Wednesday.pdf


Once a GNN can accurately predict whether a molecule is a potent drug, we can
use it on arbitrary new graphs to identify potential drugs:

Run on large dataset of candidates.

Select top-100 with the highest predicted potency.

Manually inspect top-100.
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Once a GNN can accurately predict whether a molecule is a potent drug, we can
use it on arbitrary new graphs to identify potential drugs:

Run on large dataset of candidates.

Select top-100 with the highest predicted potency.

Manually inspect top-100.

This very approach led to the discovery of Halicin, a previously overlooked
compound that is a highly potent antibiotic!

―
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https://petar-v.com/talks/GNN-Wednesday.pdf
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Graphs
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Basics

A graph  is de�ned by a set of nodes  and a set of edges 
.

Edges can be represented by an adjacency matrix

where  if there is an edge from node  to , and  otherwise.

The features of the nodes are represented by a matrix

where  is the dimensionality of the node features.

G = (V , E) V
E ⊆ V × V

A ∈ {0, 1} ,∣V∣×∣V∣

A = 1ij i j A = 0ij

X ∈ R∣V∣×d

d
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Tasks

Given a graph  and its  representation, we want to make

graph-level predictions , using graph-level functions ,

node-level predictions , using node-level functions .

edge-level predictions , using edge-level functions .

G = (V , E) (X,A)

y ∈ Y f (X,A)

y ∈ Y ∣V∣ F(X,A)

y ∈ Y ∣E ∣ F(X,A)
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―
Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 14 / 47

https://udlbook.github.io/udlbook/


Permutation matrices

A permutation matrix  is a matrix with  rows and columns,
where each row and column contains a single  and the remaining entries are .

P ∈ {0, 1}∣V∣×∣V∣ ∣V ∣
1 0
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Permutation invariance

The very representation  of a graph imposes a node ordering, which does
not align with the nodes and edges being unordered. Permuting the nodes of
the graph should not modify the results!

For graph-level tasks, we want permutation invariance, i.e.

for all permutation matrices .

(X,A)

f (PX,PAP ) = f (X,A)T

P
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Permutation equivariance

For node-level tasks, we want permutation equivariance, i.e.

for all permutation matrices .

F(PX,PAP ) = PF(X,A)T

P
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Graph neural networks
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Blueprint

Graph neural networks (GNNs) are neural networks that operate on graphs.
They implement graph-level permutation invariance and node-level permutation
equivariance.

The general blueprint is to stack permutation equivariant function(s), optionally
followed by a permutation invariant function.
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https://arxiv.org/abs/2301.08210
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If we denote  for , then

where  is an arbitrary function,  is a shared permutation invariant function in 
, and  is a permutation invariant aggregator (e.g., sum, average or max).

h = ϕ(x ,X)i i i ∈ V

f (X,A)

F(X,A)

= g( h )
i∈V

⨁ i

=
⎣

⎡h1
⋮
hV
⎦

⎤

g ϕ

X ⨁
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Locality

A strong inductive bias of graph neural networks is based on locality. It
assumes that the information about a node is most relevant to its close
neighbors rather than distant ones.

For a node , we denote its neighborhood as 
.

Accordingly,  is rede�ned as a local function that is applied to the node  and
its neighborhood  to compute .

As previously,  is permutation equivariant if  is permutation invariant in .

i ∈ V
N = {j ∈ V ∣ (i, j) ∈ E ∨ (j, i) ∈ E} ∪ {i}i

ϕ i

N i h = ϕ(x ,X )i i N i

F ϕ XN i
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―

Note:  denotes .g ϕ 24 / 47



Layers

Permutation equivariant functions  are often referred to as GNN layers.

Similarly to regular layers, a GNN layer computes a new representation

from the input representation  of the graph.

F

H = F(X,A) = =
⎣

⎡ h1
⋮
h∣V∣⎦

⎤

⎣

⎡ ϕ(x ,X )1 N 1

⋮
ϕ(x ,X )∣V∣ N ∣V∣

⎦

⎤

(X,A)
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GNN layers are usually classi�ed in three spatial �avors depending on how they
implement the propagation operator :

Convolutional

Attentional

Message-passing

ϕ
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Convolutional

Features of neighboring nodes are
aggregated with �xed coe�cients :

Example:

cij

h = ϕ x , c φ(x )i
⎝

⎛
i

j∈N i

⨁ ij j
⎠

⎞

h = σ W xi
⎝

⎛

j∈N i

∑
∣N ∣i

1 T
j
⎠

⎞

―
Image credits: Bronstein et al., Geometric Deep Learning, 2021. 27 / 47

https://arxiv.org/abs/2104.13478.pdf


Attentional

Features of neighboring nodes are
aggregated with implicit weights via
an attention mechanism:

Example:

h = ϕ x , a(x ,x )φ(x )i
⎝

⎛
i

j∈N i

⨁ i j j
⎠

⎞

h = σ α W xi
⎝

⎛

j∈N i

∑ ij
T

j
⎠

⎞

―
Image credits: Bronstein et al., Geometric Deep Learning, 2021. 28 / 47

https://arxiv.org/abs/2104.13478.pdf


Message passing

Compute arbitrary vectors (or
messages) to be sent across the
edges of the graph:

This is the most generic form of GNN
layers.

h = ϕ x , φ(x ,x )i
⎝

⎛
i

j∈N i

⨁ i j
⎠

⎞

―
Image credits: Bronstein et al., Geometric Deep Learning, 2021. 29 / 47

https://arxiv.org/abs/2104.13478.pdf


Parallel composition

Each �avor of GNN layers can be composed in parallel and then combined (e.g.,
by concatenation or average) to form the �nal representation  as

This is similar to having multiple kernels in a convolutional layer or multiple
attention heads in an attention layer.

H

.
H
Hk

= concat(H , ...,H )1 K

= F (X,A)k
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―
Image credits: Petar Veličković, Graph Attention Networks, 2017. 31 / 47

https://arxiv.org/abs/1710.10903


Sequential composition

Layers can be stacked in series to form deep graph neural networks:

H0

H1

...

HL

= X
= F (H ,A)1 0

= F (H ,A)L L−1
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1-layer GNN

Stacking layers in series increases the effective receptive �eld of each node.
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2-layer GNN

Stacking layers in series increases the effective receptive �eld of each node.
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3-layer GNN

Stacking layers in series increases the effective receptive �eld of each node.
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Global pooling

To make graph-level predictions, the node representations  are aggregated
into a single vector

using a permutation invariant pooling operator (e.g., max, mean, sum, etc.)

 is then usually passed through a regular MLP  to make the �nal prediction.

H

= hh̄
i∈V

⨁ i

h̄ g
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Special cases
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Empty graph

When the set of edges is empty, the graph reduces to a set of isolated nodes. In
this case,  for all  and the propagation operator  degenerates to a
function  applied in isolation to each node,

Such a structure is often referred to as a Deep Set and can be considered as a
special case of a GNN.

N = {i}i i ϕ

φ

.g( ϕ(x ,X )) = g( φ(x ))
i∈V

⨁ i N i

i∈V

⨁ i
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Complete graph

When nodes are expected to have a relational structure but the edges are
unknown, it is common to assume that all nodes are connected to each other.
In this case,  for all  and no coe�cient  of interaction can be
assumed.

N = Vi i cij
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For convolutional GNN layers,

in which  is identical for all nodes . The model is thus equivalently
expressive to ignoring that input altogether.

h = ϕ x , φ(x ) ,i
⎝

⎛
i

j∈V

⨁ j
⎠

⎞

φ(x )⨁j∈V j i
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For attentional GNN layers however,

which yields the self-attention layer.

In other words, the transformer architecture is a special case of a GNN.

h = ϕ x , a(x ,x )φ(x ) ,i
⎝

⎛
i

j∈V

⨁ i j j
⎠

⎞
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Images as graphs

Images can be represented as graphs, where each pixel is a node and the edges
are de�ned by the spatial adjacency of the pixels.

That is, convolutional neural networks can be seen as a special case of GNNs.
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Applications
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Graph neural networks for antiobiotic discovery

―
Credits: Stokes et al, A Deep Learning Approach to Antibiotic Discovery, 2020. 42 / 47

https://doi.org/10.1016/j.cell.2020.01.021


Graph neural network for object detection in point clouds

―
Credits: Shi and Rajkumar, Point-GNN, 2020. 43 / 47

https://arxiv.org/abs/2003.01251


Travel time prediction in Google Maps

―
Credits: Derrow-Pinion et al, 2021. 44 / 47

https://arxiv.org/abs/2108.11482


Learning to simulate physics with graph networks

―
Credits: Sanchez-Gonzalez et al, 2020. 45 / 47

https://arxiv.org/abs/2002.09405


0:00 / 1:21

―
Credits: Sanchez-Gonzalez et al, 2020. 46 / 47

https://arxiv.org/abs/2002.09405


Medium-range global weather forecasting

―
Credits: Lam et al, 2022. 47 / 47

https://arxiv.org/abs/2212.12794


The end.
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