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Motivation

Many real-world problems do not fit into the tabular format of machine learning.
Instead, many problems involve data that is naturally represented as graphs:

 (bio)molecular structures,

traffic networks,

scene graphs,

social networks,

computer programs,

...and many more!
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https://arxiv.org/abs/1901.00596

The case of molecules

Molecules are naturally represented as graphs, where nodes are atoms and
edges are bonds.

Features can be associated with each node and edge, e.g. the atomic number,
the number of bonds, etc.

Credits: Petar VeliekovidyICST Wednesday Seminar, 2021.


https://petar-v.com/talks/GNN-Wednesday.pdf

An interesting problem is to predict whether a molecule is a potent drug. This
can be formulated as a binary classification problem, where

e the inputis a graph representation of the molecule and

e the outputis abinary label (e.g., whether the drug will inhibit bacterial
growth).
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Credits: Petar VeliekovidyICST Wednesday Seminar, 2021.


https://petar-v.com/talks/GNN-Wednesday.pdf

Once a GNN can accurately predict whether a molecule is a potent drug, we can
use it on arbitrary new graphs to identify potential drugs:

e Run on large dataset of candidates.
e Select top-100 with the highest predicted potency.

e Manually inspect top-100.



Once a GNN can accurately predict whether a molecule is a potent drug, we can
use it on arbitrary new graphs to identify potential drugs:

e Run on large dataset of candidates.
e Select top-100 with the highest predicted potency.

e Manually inspect top-100.

This very approach led to the discovery of Halicin, a previously overlooked
compound that is a highly potent antibiotic!
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Credits: Petar VeliekovidyICST Wednesday Seminar, 2021.


https://petar-v.com/talks/GNN-Wednesday.pdf

NEWS | 20 February 2020

Powerful antibiotics discovered
using Al

Machine learning spots molecules that work even against ‘untreatable’ strains of
bacteria.

Jo Marchant

Escherichia coli bacteria, coloured green, in a scanning electron micrograph. Credit: Stephanie
Schuller/SPL

A pioneering machine-learning approach has identified powerful new types of antibiotic from
a pool of more than 100 million molecules — including one that works against a wide range of
bacteria, including tuberculosis and strains considered untreatable.



M) Check for updates. co m m e n t

Dual use of artificial-intelligence-powered drug

discovery

An international security conference explored how artificial intelligence (Al) technologies for drug discovery could
be misused for de novo design of biochemical weapons. A thought experiment evolved into a computational proof.

Fabio Urbina, Filippa Lentzos, Cédric Invernizzi and Sean Ekins

he Swiss Federal Institute for NBC

(nuclear, biological and chemical)

Protection —Spiez Laboratory—
convenes the ‘convergence’ conference
series' set up by the Swiss government to
identify developments in chemistry, biology
and enabling technologies that may have
implications for the Chemical and Biological
Weapons Conventions. Meeting every
two years, the conferences bring together
an international group of scientific and
disarmament experts to explore the current
state of the art in the chemical and biological
fields and their trajectories, to think through
potential security implications and to
consider how these implications can most
effectively be managed internationally.
The meeting convenes for three days of
discussion on the possibilities of harm,
should the intent be there, from cutting-edge
chemical and biological technologies.
Our drug discovery company received an
invitation to contribute a presentation on
how AT technologies for drug discovery
could potentially be misused.

Risk of misuse

The thought had never previously struck
us. We were vaguely aware of security
concerns around work with pathogens or

+Generated
compounds
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A t-SNE plot visualization of the LD, dataset and top 2,000 MegaSyn Al-generated and predicted
toxic molecules illustrating VX. Many of the molecules generated are predicted to be more toxic in vivo in
the animal model than VX (histogram at right shows cut-off for VX LD.,). The 2D chemical structure of VX

is shown on the right.

published computational machine learning
models for toxicity prediction in different
areas, and, in developing our presentation to
the Spiez meeting, we opted to explore how
Al could be used to design toxic molecules.
It was a thought exercise we had not
considered before that ultimately evolved
into a computational proof of concept for
making biochemical weapons.

Generation of new toxic molecules
We had previously designed a commercial

be used to help derive compounds for the
treatment of neurological diseases (details
of the approach are withheld but were
available during the review process). The
underlying generative software is built on,
and similar to, other open-source software
that is readily available’. To narrow the
universe of molecules, we chose to drive the
generative model towards compounds such
as the nerve agent VX, one of the most toxic
chemical warfare agents developed during
the twentieth century — a few salt-sized
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Graphs



Basics

A graph G = (V, £) is defined by a set of nodes V and a set of edges
ECY XV

Edges can be represented by an adjacency matrix

A € {0, 1}|V|><|V\,

where A;; = 1if there is an edge from node 7 to j,and A;; = 0 otherwise.

The features of the nodes are represented by a matrix
X ¢ R|V|Xd

where d is the dimensionality of the node features.
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Tasks

Given agraph G = (V, £) and its (X, A)) representation, we want to make

« graph-level predictions y € Y, using graph-level functions f(X, A),
« node-level predictions y € Y'Y/, using node-level functions F(X, A).

. edge-level predictions y € Y€/, using edge-level functions F(X, A).
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Credits: Simon J.D. Prince, Understanding Deep Learning, 2023.
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https://udlbook.github.io/udlbook/

Permutation matrices

A permutation matrix P € {0, 1}/Y*Vis a matrix with |V| rows and columns,
where each row and column contains a single 1 and the remaining entries are 0.
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Permutation invariance

The very representation (X, A) of a graph imposes a node ordering, which does
not align with the nodes and edges being unordered. Permuting the nodes of
the graph should not modify the results!

For graph-level tasks, we want permutation invariance, i.e.
f(PX,PAPY) = f(X,A)

for all permutation matrices P.
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Permutation equivariance

For node-level tasks, we want permutation equivariance, i.e.
F(PX,PAPY) =PF(X,A)

for all permutation matrices P.
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Graph neural networks
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Blueprint

Graph neural networks (GNNs) are neural networks that operate on graphs.
They implement graph-level permutation invariance and node-level permutation
equivariance.

The general blueprint is to stack permutation equivariant function(s), optionally
followed by a permutation invariant function.
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Image credits: Petar VeliekovidyEverything is Connected: Graph Neural Networks, 2023.
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https://arxiv.org/abs/2301.08210

Inputs Latents

(X, A) (H,A)

Image credits: Petar VeliekovidyEverything is Connected: Graph Neural Networks, 2023. 21/47


https://arxiv.org/abs/2301.08210

Image credits: Petar VeliekovidyEverything is Connected: Graph Neural Networks, 2023.

Latents

(H, A)

Node classification

zZ; = f(hi)

21/
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https://arxiv.org/abs/2301.08210

Node classification

zZ; = f(hi)

- GINN

Graph classification

zg = f (@z‘ev hi)

Inputs Latents

(X, A) (H,A)

Image credits: Petar VeliekovidyEverything is Connected: Graph Neural Networks, 2023. 21/47


https://arxiv.org/abs/2301.08210

+ GNN

Image credits: Petar VeliekovidyEverything is Connected: Graph Neural Networks, 2023.

Node classification

zZ; = f(hi)

Graph classification

26 = [ (Dicv hi)

Link prediction
zij = f(hi, hy, e;;)


https://arxiv.org/abs/2301.08210

If we denote h; = ¢(x;, X) fori € V, then

F(X,A) = g(@Ph)
1Y
h;
F(X,A)= | :
hy
where g is an arbitrary function, ¢ is a shared permutation invariant function in
X, and €p is a permutation invariant aggregator (e.g., sum, average or max).
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Locality

A strong inductive bias of graph neural networks is based on locality. It
assumes that the information about a node is most relevant to its close
neighbors rather than distant ones.

Foranode: € V, we denote its neighborhood as

Ni={jeV|(j)e&v(jiePufi}

Accordingly, ¢ is redefined as a /ocal function that is applied to the node 7 and
its neighborhood NV; to compute h; = ¢(x;, X, ).

As previously, F' is permutation equivariant if ¢ is permutation invariant in Xy, .
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XNb — {{Xa, Xpy Xcy Xd, Xe}}

Note: g denotes ¢



Layers
Permutation equivariant functions F are often referred to as GNN layers.

Similarly to regular layers, a GNN layer computes a new representation

hl ¢(X1’X./\f1)
H=FX,A)=|:|= E
hyy, Xy, Xy

from the input representation (X, A) of the graph.
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GNN layers are usually classified in three spatial flavors depending on how they
implement the propagation operator ¢:

e Convolutional
e Attentional

e Message-passing
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Convolutional

Features of neighboring nodes are \F o
ST -
aggregated with fixed coefficients ¢;;: ( )
B —cic

h; = ¢ | x;, @ cijp(x;) /“hd Chc\

JEN; X X

Example:

1 T
hi =0 Z WW X
JEN;

Image credits: Bronstein et al,, Geometric Deep Learning, 2021.
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https://arxiv.org/abs/2104.13478.pdf

Attentional

Features of neighboring nodes are
aggregated with implicit weights via
an attention mechanism:

hi - ¢ X @ a,(Xz',Xj)QO(Xj)
jeEN;
Example:

> Wik,

jEN;

Image credits: Bronstein et al,, Geometric Deep Learning, 2021.
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https://arxiv.org/abs/2104.13478.pdf

Message passing

Compute arbitrary vectors (or :m, my,

messages) to be sent across the »\ g

edges of the graph: /Xb\i— e e
h, = ¢ | x;, @ p(xi,%;) X X,

jeN;

This is the most generic form of GNN
layers.

Image credits: Bronstein et al,, Geometric Deep Learning, 2021. 29 /47


https://arxiv.org/abs/2104.13478.pdf

Parallel composition

Each flavor of GNN layers can be composed in parallel and then combined (e.g.,
by concatenation or average) to form the final representation H as

H = concat(Hq, ..., Hg)

This is similar to having multiple kernels in a convolutional layer or multiple
attention heads in an attention layer.
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concat/avg

Image credits: Petar VeliekovidylGraph Attention Networks, 2017.


https://arxiv.org/abs/1710.10903

Sequential composition

Layers can be stacked in series to form deep graph neural networks:

H, = X
H, =F,(Hy,A)

H, =F,(H; ,,A)
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T-layer GNN

Stacking layers in series increases the effective receptive field of each node.
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2-layer GNN

Stacking layers in series increases the effective receptive field of each node.
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9{ o O Node of interest
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3-layer GNN

Stacking layers in series increases the effective receptive field of each node.
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Global pooling

To make graph-level predictions, the node representations H are aggregated
into a single vector

h=Ph;
S%

using a permutation invariant pooling operator (e.g., max, mean, sum, etc.)

h is then usually passed through a regular MLP g to make the final prediction.
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Special cases
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Empty graph

When the set of edges is empty, the graph reduces to a set of isolated nodes. In
this case, N/; = {4} for all 2 and the propagation operator ¢ degenerates to a
function ¢ applied in isolation to each node,

1Y eV

Such a structure is often referred to as a Deep Set and can be considered as a
special case of a GNN.



Complete graph

When nodes are expected to have a relational structure but the edges are
unknown, it is common to assume that all nodes are connected to each other.

In this case, N; = V for all 7 and no coefficient c;; of interaction can be
assumed.



For convolutional GNN layers,

hz:¢ Xia@cp(xj) 9

A%

in which €D, ¢(x;) is identical for all nodes . The model is thus equivalently
expressive to ignoring that input altogether.
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For attentional GNN layers however,

hz' — ¢ X, @a(xi) Xj)QO(Xj) )
jEV

which yields the self-attention layer.

In other words, the transformer architecture is a special case of a GNN.
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Images as graphs

Images can be represented as graphs, where each pixel is a node and the edges
are defined by the spatial adjacency of the pixels.

That is, convolutional neural networks can be seen as a special case of GNNs.
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Graph neural networks for antiobiotic discovery

Cell

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract
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Credits: Stokes et al, A Deep Learning Approach to Antibiotic Discovery, 2020.

Authors

Jonathan M. Stokes, Kevin Yang,
Kyle Swanson, ..., Tommi S. Jaakkola,
Regina Barzilay, James J. Collins

Correspondence

regina@csail.mit.edu (R.B.),
jimjc@mit.edu (J.J.C.)

In Brief

A trained deep neural network predicts
antibiotic activity in molecules that are
structurally different from known
antibiotics, among which Halicin exhibits
efficacy against broad-spectrum
bacterial infections in mice.


https://doi.org/10.1016/j.cell.2020.01.021

Graph neural network for object detection in point clouds

a: Graph Construction from a Point Cloud

c: Bounding Box Merging and Scoring

Merge bounding
boxes

Vertex state —
initialization

Figure 2. The architecture of the proposed approach. It has three main components: (a) graph construction from a point cloud, (b) a graph
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Graph neural network with T iterations

MLP

Aggregate
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neural network for object detection, and (c) bounding box merging and scoring.

Credits: Shiand Rajkumar, Point-GNN, 2020.
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https://arxiv.org/abs/2003.01251
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https://arxiv.org/abs/2108.11482

Learning to simulate physics with graph networks

Learned simulator, sy

dp —1
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Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dg, and a fixed update procedure.

(b) The ds uses an “encode-process-decode” scheme, which computes dynamics information, ¥, from input state, X. (¢) The ENCODER
constructs latent graph, G, from the input state, X . (d) The PROCESSOR performs M rounds of learned message-passing over the latent
graphs, G°, ..., G*. (e) The DECODER extracts dynamics information, Y, from the final latent graph, G*.

Credits: Sanchez-Gonzalez et al, 2020.
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https://arxiv.org/abs/2002.09405

Credits: Sanchez-Gonzalez et al, 2020. 46 /47


https://arxiv.org/abs/2002.09405

Medium-range global weather forecasting

a) Input weather state b) Predicting the next state c) Rolling out a forecast
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Credits: Lam et al, 2022. 47 /47


https://arxiv.org/abs/2212.12794

The end.
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