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See code/gpt/.
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Large language models
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https://lifearchitect.ai/models/

Decoder-only transformers

The decoder-only transformer has become the de facto architecture for large
language models.

These models are trained with self-supervised learning, where the target
sequence is the same as the input sequence, but shifted by one token to the
right.
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https://d2l.ai/

Historically, GPT-1 was first pre-trained and then fine-tuned on downstream

tasks
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https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Scaling laws

Transformer language model performance improves smoothly as we increase
the model size, the dataset size, and amount of compute used for training.

For optimal performance, all three factors must be scaled up in tandem.
Empirical performance has a power-law relationship with each individual factor
when not bottlenecked by the other two.
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https://arxiv.org/pdf/2001.08361.pdf

Large models also enjoy better sample efficiency than small models.

e Larger models require less data to achieve the same performance.

e The optimal model size shows to grow smoothly with the amount of
compute available for training.

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget
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https://arxiv.org/pdf/2001.08361.pdf

In-context learning

GPT-2 and following models demonstrated potential of using the same
language model for multiple tasks, without updating the model weights.

Zero-shot, one-shot and few-shot learning consist in prompting the model with
a few examples of the target task and letting it learn from them. This paradigm
is called in-context learning.
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Emergent abilities

As language models grow in size, they start to exhibit emergent abilities that are
not present in the original training data.

A (few-shot) prompted task is emergent if it achieves random performance for
small models and then (suddenly) improves as the model size increases.
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https://arxiv.org/abs/2206.07682

Notably, chain-of-thought reasoning is an emergent ability of large language
models. It improves performance on a wide range of arithmetica,
commonsense, and symbolic reasoning tasks.

Standard Prompting Chain-of-Thought Prompting
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 maore cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11. A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
) do they have?
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Credits: Wei et al, 2022b. 15/19
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https://openreview.net/pdf?id=_VjQlMeSB_J

Credits: Wei et al, 2022b.
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https://openreview.net/pdf?id=_VjQlMeSB_J

Alignment

Increasing the model
size does not inherently
makes models follow a
user's intent better,
despite emerging
abilities.

Worse, scaling up the
model may increase the
likelihood of undesirable
behaviors, including
those that are harmful,
unethical, or biased.
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Human feedback can be used for better aligning language models with human
intent, as shown by InstructGPT.

Step1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.
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Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.

Credits: Ouyang et al, 2022.


https://arxiv.org/pdf/2203.02155.pdf

Prompt:
What is the purpose of the list C in the code below?

def binomial_coefficient(n, r):
C = [0 for i in range(r + 1)];
clo] = 1;
for i in range(l, n + 1):
j = min(i, r);
while j > O:
cljl += cl[j - 11;
j =1
return Clr]

GPT-3 175B completion:

A. to store the value of C[0]
B. to store the value of C[1]
C. to store the value of C[i]

D. to store the value of C[i- 1]

InstructGPT 175B completion:

The list C in this code is used to store the values of the
binomial coefficient as the function iterates through
the values of n and r. It is used to calculate the value
of the binomial coefficient for a given value of n and
r, and stores the result in the final return value of the
function.



The end.
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