Deep Learning

Lecture 7: Attention and transformers

Prof. Gilles Louppe
g.louppe@uliege.be

w LIEGE
université 1/58

mailto:g.louppe@uliege.be

Today

Attention is all you need!

e Encoder-decoder
e Bahdanau attention
e Attention layers

e Transformers

Encoder-decoder

3/58

Many real-world problems require to process a signal with a sequence

structure.

e Sequence classification:
o sentiment analysis in text
o activity/action recognition in videos

o DNA sequence classification

e Seguence synthesis:
o text synthesis
o music synthesis

o motion synthesis

e Sequence-to-sequence translation:

o speech recognition
o text translation

o time series forecasting

Credits: Francois Fleuret, 14x050/EE559 Deep Learning, EPFL.

https://fleuret.org/dlc/

Given a set X, if S(X') denotes the set of sequences of elements from X,
S(X) — Utoil Xt)

then we formally define:

Sequence classification f:8(X)— A°
Sequence synthesis f:RY — S(X)
Sequence-to-sequence translation f:8X)—SQ)

In the rest of the slides, we consider only time-indexed signal, although it
generalizes to arbitrary sequences.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

https://fleuret.org/ee559/

When the input is a sequence x € S(IR?) of variable length, the historical
approach is to use a recurrent encoder-decoder architecture that first
compresses the input into a single vector v and then uses it to generate the
output sequence.

Input }—| Encoder p—| State |—>| Decoder > Output

Credits: Dive Into Deep Learning, 2023.

https://d2l.ai/

Encoder Decoder

lls regardent : <eos>
—> —> —> —> — —3 —>
¥ I |7 f 15 7]
They are watching : <eos> ' , , |
<bos> lls regardent

Recurrent encoder-decoder models compress an input sequence x1.7 into a
single thought vector v, and then produce an output sequence y1.7v from an
autoregressive generative model

h, = ¢(Xt> ht—l)
V = hT

yi: ~ p('b’l:i—hv)-

Credits: Dive Into Deep Learning, 2023.

https://d2l.ai/

QY
© ®

This architecture assumes that the sole vector v carries enough information to
generate entire output sequences. This is often challenging for long sequences.

Bahdanau attention

10/58

Using the nonvolitional cue based on saliency (red cup, non-paper), attention is
involuntarily directed to the coffee.

Credits: Dive Into Deep Learning, 2023. 11/58

https://d2l.ai/

Using the volitional cue (want to read a book) that is task-dependent, attention
is directed to the book under volitional control.

Credits: Dive Into Deep Learning, 2023. 12 /58

https://d2l.ai/

Output

Keys Values Y
(Nonvolitional cues) (Sensory inputs)
—>
—>
| Atten.tion \
pooling [\
\ /
— " _
Query J
(Volitional cue)

Credits ,2023.

https://d2l.ai/

Attention mechanisms can transport information from parts of the input signal
to parts of the output specified dynamically.

Under the assumption that each output token comes from one or a handful of

input tokens, the decoder should attend to only those tokens that are relevant
for producing the next output token.

@Qf@ C®

OOO - ©

Attention-based machine translation

Encoder

Decoder

FC

A

nXx

Recurrent layer

Recurrent layer

Credits: ,2023.

!) 21
(
Embedding Attention Embedding
Sources Targets

https://d2l.ai/

Following Bahdanau et al. (2014), the encoder is specified as a bidirectional
recurrent neural network (RNN) that computes an annotation vector for each
input token,

h; = (ﬁj,ﬁj)

- -
forj =1,...,T, where h; and h; respectively denote the forward and
backward hidden recurrent states of the bidirectional RNN.

From this, they compute a new process s;, 2 = 1, ..., T", which looks at
weighted averages of the h; where the weights are functions of the signal.

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 16/58

https://fleuret.org/dlc/

Givenyi,...,yi—1 and sy, ..., s;_1, first compute an attention vector
a; ; = softmax;(a(s;_1,h;))

fory =1,...,T,whered a is an attention scoring function, here specified as a
one hidden layer tanh MLP.

Then, compute the context vector from the weighted h;'s,

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 17 /58

https://fleuret.org/dlc/

The model can now make the prediction y; as

S; = f(si—layi—la Ci)
yi: ~ g(Yi—hSiaci)a

where fis a GRU.

This is context attention, where s, _; modulates what to lookin hy, ..., hy to
compute s; and sample y;.

18/58

agreement
European
Economic
signed
August
1992
<end>
environment
environments

(15} wn o
g 5 £ £22c % Qw € . % %
K ﬁﬁggggg QEEEE v
accord . I
sur convient
de
la noter
zone que
économique I
européenne environnemerjt
a marin
" est
été "
signé maoins
en connu
aolt de

I
environnement

1992

<end=

<end>

(b)

Attention layers

The attention mechanisms can be defined generically as follows.

Given a context or query vector q € RY, a key tensor K € R™** and a value
tensor V. € R™*? an attention layer computes an output vectory € R with

y = Z softmax; (a(q, K;;6))Vy,
i=1

where a : R? x R¥ — R s a scalar attention scoring function.

21/58

Credits

i +
Attention 4, tion G |

scoring .
function weights

8
)

Keys —

LY
oS

Query)

,2023.

Values

Output

https://d2l.ai/

Additive attention

When queries and keys are vectors of different lengths, we can use an additive
attention as the scoring function.

Given q € R? and k € R¥, the additive attention scoring function is
a(q,k) = w, tanh(W, q + W, k)

where w, € R", W, € R?*" and W, € R**" are learnable parameters.

23/58

Scaled dot-product attention

When queries and keys are vectors of the same length d, we can use a scaled
dot-product attention as the scoring function.

Given q € R? and k € RY, the scaled dot-product attention scoring function is

_a'k
a(q, k) = vk

24/5

For n queries Q € R™ ¢ keys K € R™*? and values V € R™*?, the scaled
dot-product attention layer computes an output tensor

K7
Y = softmax Q— V € R™,

Vd

attention matrix A

25/58

A =gl & s
© :
w!,(
llﬁlc-ne

Recall that the dot product is simply a un-normalised cosine similarity, which
tells us about the alignment of two vectors.

Therefore, the QKT matrix is a similarity matrix between queries and keys.

26/58

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 27/58

https://fleuret.org/dlc/

In the currently standard models for sequences, the queries, keys and values
are linear functions of the inputs.

Given the learnable matrices W, € R¥&>% W, € R4 and W, € R and
two input sequences X € R™? and X' € R™** we have

Q=XW, e R
K = X'W] ¢ R™
V = X'WI ¢ R™,

28/58

Self-attention

When the queries, keys and values are derived from the same inputs, the
attention mechanism is called self-attention.

For the scaled dot-product attention, the self-attention layer is obtained when
X =X

Therefore, self-attention can be used as a regular feedforward-kind of layer,
similarly to fully-connected or convolutional layers.

UONUBYIEJ|8S

£Q

CNNs vs. RNNs vs. self-attention

RNN

CN

attention

Self-

,2023.

Credits:

https://d2l.ai/

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k -n-d?) O(1) O(logk(n))

where n is the sequence length, d is the embedding dimension, and k is the

kernel size of convolutions.

A toy example

To illustrate the behavior of the attention mechanism, we consider a toy
problem with 1d sequences composed of two triangular and two rectangular
patterns. The target sequence averages the heights in each pair of shapes.

/\

Input Target

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL.

https://fleuret.org/dlc/

1600 - = \Without attention
—— With attention

1400
1200 -

1000 -+

MSE

800 A

600 -

400 -

200 -

10° 10t 10
Nb. of epochs

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 33/58

https://fleuret.org/dlc/

We can modify the toy problem to consider targets where the pairs to average
are the two right and leftmost shapes.

/\ A\

Input Target

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL.

https://fleuret.org/dlc/

The performance is expected to be poor given the inability of the self-attention
layer to take into account absolute or relative positions. Indeed, self-attention is
permutation-invariant:

m Ty T
q K;
y = E softmax; (—) V;
— Vd

m TyxrT

q Ka)
— Z softmax; = o) A\ 0
i=1 Vd

for any permutation o of the key-value pairs.

(It is also permutation-equivariant with permutation o of the queries.)

35/58

= With attention, no positional encoding
2500
With attention, positional encoding
2000
1500 -
w
]
=
1000
500 ~ e —
0 —— T ¥ " T
10° 10 107

Nb. of epochs

However, this problem can be fixed by providing positional encodings explicitly
to the attention layer.

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 36/58

https://fleuret.org/dlc/

Transformers

37/58

Vaswani et al. (2017) proposed to go one step further: instead of using
attention mechanisms as a supplement to standard convolutional and
recurrent layers, they designed a model, the transformer, combining only
attention layers.

The transformer was designed for a sequence-to-sequence translation task, but
it is currently key to state-of-the-art approaches for most tasks involving sets or
sequences.

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL.

38/58

https://fleuret.org/dlc/

Scaled dot-product attention

The first building block of the transformer architecture is a scaled dot-
production attention module

ttention(Q, K, V) ft (QKT) \%
attention(Q, K, = softmax
vy,

where the 1/4/dy, scaling is used to keep the (softmax’s) temperature constant
across different choices of the query/key dimension dy.

FC
}
[_> Concat <——j
Attention Attention
| Fc || Fc || Fc | | Fc || Fc || FCc |

Queries Keys Values

Multi-head attention

The transformer projects the queries, keys and values h = 8 times with distinct
linear projections to dr = 64, dr = 64 and d, = 64 dimensions respectively.

multihead(Q, K, V) = concat (Hy, ..., H,) W°
H,; = attention(QW% KWK VW)

7
with

W? e Rdmodel Xdy, : WlK e Rdmodel Xd, , WY e Rdmodel Xd,) WZO c thv X dmodel

Credits: Dive Into Deep Learning, 2023.

https://d2l.ai/

Encoder-decoder architecture
The transformer model is composed of:

e An encoder that combines N = 6 modules, each composed of a multi-
head attention sub-module, and a (per-component) one-hidden-layer MLP,
with residual pass-through and layer normalization. All sub-modules and
embedding layers produce outputs of dimension d,,qe1 = 512.

e A decoderthat combines N = 6 modules similar to the encoder, but using
masked self-attention to prevent positions from attending to subsequent
positions. In addition, the decoder inserts a third sub-module which
performs multi-head attention over the output of the encoder stack.

41/58

Encoder

Add & norm

[}

Positionwise
FFN

—

>

Add & norm

[}

Multi-head
attention

S
X

[| I p———

Credits ,2023.

Positional
encoding »C}__)
Embedding
Sources

Decoder

FC

4

———— .

Add & norm

)

Positionwise
FFN

r

Add & norm

<

A

Muti-head
attention

—

Add & norm

€

)

Masked
multi-head
attention

[

Positional
encoding

Embedding

t

Targets

https://d2l.ai/

Decoding time step:®2 3456 OUTPUT

t

(Linear + Softmax

[ENCODER J (DECODER

\\— /)

L} /)y
[ENCODER] [DECODER
Ry
EMBEDDING
WITHTIME O O OO
SIGNAL

EMBEDDINGS

INPUT Je suis étudiant

The encoders start by processing the input sequence. The output of the top
encoder is then transformed into a set of attention vectors K and V passed to
the decoders.

Credits: Jay Alammar, The lllustrated Transformer. 43/58

https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1@3 4 56 OUTPUT

()
EEEE EEEE T Kencdec Vencdec (Linear + Softmax)
ENCODERS DECODERS]
. J
EMBEDDING t t 4 4
WITH TIME [TTT] [ITTT] [ITTT] [(TT1J
SIGNAL
EMBEDDINGS [CITT] (L1111 [IIT1] 111
e suis étudiant PREVIOUS
il J QUTPUTS

Each step in the decoding phase produces an output token, until a special
symbol is reached indicating the completion of the transformer decoder's

output.

The output of each step is fed to the bottom decoder in the next time step, and
the decoders bubble up their decoding results just like the encoders did.

Credits: Jay Alammar, The lllustrated Transformer. 44758

https://jalammar.github.io/illustrated-transformer/

In the decoder:

e The first masked self-attention sub-module is only allowed to attend to
earlier positions in the output sequence. This is done by masking future
positions.

e The second multi-head attention sub-module works just like multi-head
self-attention, except it creates its query matrix from the layer below it, and
takes the keys and values matrices from the output of the encoder stack.

Credits: Jay Alammar, The lllustrated Transformer. 45/58

https://jalammar.github.io/illustrated-transformer/

Positional encoding

Positional information is provided through an additive positional encoding of
the same dimension dmodel @s the internal representation and is of the form

t
PEt,Qi = Sin (%)
10000 %model

t
PEt,2i+1 — COS (2i) .
10000 model

After adding the positional encoding, words will be closer to each other based
on the similarity of their meaning and their relative position in the sentence, in
the d,,qe1-dimensional space.

Alternatively, the model can also learn the positional encoding.

46/ 58

128-dimensional positonal encoding for a sentence with the maximum length
of 50. Each row represents the embedding vector.

Machine translation

The transformer architecture was first designed for machine translation and
tested on English-to-German and English-to-French translation tasks.

o
© g
= w
[7p] © ECW @© wn ()
2 c 9 O 23T OO 5 s g 32
— = 2 = - @ © O = o = 2 =2
b}
T 4
N ¢ 5
0 gl E c & ® »)
2 T g 0 23T QO 3 T g%

Self-attention layers learned that "it" could refer
to different entities, in different contexts.

Credits: Transformer: A Novel Neural Network Architecture for Language Understanding, 2017. 48 /58

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

first first first first

[END] [END] [END] [END]

[END]

[END] [END] [END]
Head 5 Head & Head 7 Head &

Attention maps extracted from the multi-head attention modules
show how input tokens relate to output tokens.

Credits: Transformer model for language understanding.

https://www.tensorflow.org/tutorials/text/transformer

Decoder-only transformers

The decoder-only transformer has become the de facto architecture for large
language models p(x;|x1.4-1).

These models are trained with self-supervised learning, where the target
sequence is the same as the input sequence, but shifted by one token to the
right.

[like this book <eos>

b ¢ ¢+ ¢ 1

> (JOOOO
g JOOO
Transformer decoder _é this D D D
g like OO0
U
<bcl>s> : Iilie thlis bolok <bos> | like this book

Attention input

Credits: Dive Into Deep Learning, 2023.

https://d2l.ai/

(demo)

51/58

https://poloclub.github.io/transformer-explainer/

Historically, GPT-1 was first pre-trained and then fine-tuned on downstream

tasks

Text Task
Prediction | Classifier

~

12x —

Layer Norm
Iy

()
A

Feed Forward |

A

Layer Norm

A
()
A

Masked Multi
Self Attention
A

Text & Position Embed

Classification | Start Text | Extract [|—>{ Transformer |—>| Linear ‘
Entailment | Start Premise | Delim ‘ Hypothesis | Extract |_+| Transformer |—>| Linear |
| Start Text 1 | Delim | Text 2 | Extract |_——| Transformer
Similarity - +)
| Start Text 2 | Delim ‘ Text 1 | Extract |+| Transformer
| Start Context | Delim ‘ Answer 1 | Extract |7+| Transformer |~>| Linear
Multiple Choice | Start Context | Delim ‘ Answer 2 | Extract [—>| Transformer H Linear
| Start Context | Delim

‘ Answer N | Extract |—>| Transformer H Linear

Credits: Radford et al.,, Improving Language Understanding by Generative Pre-Training, 2018.

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Scaling laws

Transformer language model performance improves smoothly as we increase
the model size, the dataset size, and amount of compute used for training.

For optimal performance, all three factors must be scaled up in tandem.
Empirical performance has a power-law relationship with each individual factor
when not bottlenecked by the other two.

7 4.2
6 —— L=(D/5.4-10'3)-009 | 5.6 —— L=(N/8.,810%3)~0-076
3.9
4.8
: 4.0
S
B 3.3 3.2
F 3
3.0
2.4
L = (Crinf2.3-108)70-050
2 : . : . 2.7 . . : : :
10=® 1077 105 1072 10°' 10! 108 109 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Credits: Kaplan et al, 2020.

53/58

https://arxiv.org/pdf/2001.08361.pdf

Large models also enjoy better sample efficiency than small models.

e Larger models require less data to achieve the same performance.

e The optimal model size shows to grow smoothly with the amount of
compute available for training.

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget

Line color indicates

Compute-efficient
training stops far
short of convergence

Test Loss 10 1

(=]

10'7 109' 1 011' 16-9 1 b-s 1 6-3 1 :':10
Tokens Processed Compute (PF-days)

Credits: Kaplan et al, 2020.

54/58

https://arxiv.org/pdf/2001.08361.pdf

Conversational agents

O
Examples

"Explain quantum computing in
simple terms" -

"Got any creative ideas for a 10
year old's birthday?" -

"How do | make an HTTP
request in Javascript?" >

ChatGPT Feb 13 Version. Free Research Preview. Our goal is to make Al systems more

ChatGPT

4

Capabilities

Remembers what user said
earlier in the conversation

Allows user to provide follow-up
corrections

Trained to decline inappropriate
requests

A

Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Limited knowledge of world and
events after 2021

q

natural and safe to interact with. Your feedback will help us improve

All modern conversational agents are based on the same transformer models,
scaled up to billions of parameters, trillions of training tokens, and thousands of

petaflop/s-days of compute.

55/58

Transformers for images

55/58

The transformer architecture was first designed for sequences, but it can be
adapted to process images.

The key idea is to reshape the input image into a sequence of patches, which
are then processed by a transformer encoder. This architecture is known as the
vision transformer (ViT).

56 /58

Label

MLP

Norm

Rep.s- Rep; Rep, Rep; Rep, Reps; Reps Rep; Repg Repg

I

Positional :
embedding _< : >—’ Patch Embedding

VPN T T

Credits: Dive Into Deep Learning, 2023. 57/58

https://d2l.ai/

e Theinputimage is divided into non-overlapping patches, which are then
linearly embedded into a sequence of vectors.

e The sequence of vectors is then processed by a transformer encoder,
which outputs a sequence of vectors.

e Training the vision transformer can be done with supervised or self-
supervised learning.

58 /58

The end.

58/58

