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Today
How to build neural networks for (some) advanced computer vision tasks.

Classi�cation

Object detection

Segmentation
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―
Credits: Aurélien Géron, 2018. 3 / 51

https://www.oreilly.com/content/introducing-capsule-networks/


Classi�cation
A few tips when using convnets for classifying images.
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Convolutional neural networks

Convolutional neural networks combine convolution, pooling and fully

connected layers.

They achieve state-of-the-art results for spatially structured data, such as

images, sound or text.

―
Credits: Dive Into Deep Learning, 2020. 5 / 51

https://d2l.ai/


For classi�cation,

the activation in the output layer is a Softmax activation producing a vector 

 of probability estimates , where  is the number of

classes;

the loss function is the cross-entropy loss.

h ∈ △C P (Y = i∣x) C
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Image augmentation

The lack of data is the biggest limit to the performance of deep learning

models.

Collecting more data is usually expensive and laborious.

Synthesizing data is complicated and may not represent the true

distribution.

Augmenting the data with base transformations is simple and e�cient.
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―
Credits: DeepAugment, 2020. 8 / 51

https://github.com/barisozmen/deepaugment


Pre-trained models

Training a model on natural images, from scratch, takes days or weeks.

Many models pre-trained on large datasets are publicly available for

download. These models can be used as feature extractors or for smart

initialization.

The models themselves should be considered as generic and re-usable

assets.
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Transfer learning

Take a pre-trained network, remove the last layer(s) and then treat the rest

of the network as a �xed feature extractor.

Train a model from these features on a new task.

Often better than handcrafted feature extraction for natural images, or

better than training from data of the new task only.

―
Credits: Mormont et al, Comparison of deep transfer learning strategies for digital pathology, 2018. 10 / 51

http://hdl.handle.net/2268/222511


Fine-tuning

Same as for transfer learning, but also �ne-tune the weights of the pre-trained

network by training the whole network on the new task.

―
Credits: Dive Into Deep Learning, 2020. 11 / 51

https://d2l.ai/


For models pre-trained on ImageNet, transferred/�ne-tuned networks usually

work even when the input images are from a different domain (e.g., biomedical

images, satellite images or paintings).

―
Credits: Matthia Sabatelli et al, Deep Transfer Learning for Art Classi�cation Problems, 2018. 12 / 51

http://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Sabatelli_Deep_Transfer_Learning_for_Art_Classification_Problems_ECCVW_2018_paper.pdf


Object detection

13 / 51



The simplest strategy to move from image classi�cation to object detection is

to classify local regions, at multiple scales and locations.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 14 / 51

https://fleuret.org/ee559/


The sliding window approach evaluates a classi�er at a large number of

locations and scales.

This approach is usually computationally expensive as performance directly

depends on the resolution and number of the windows fed to the classi�er (the

more the better, but also the more costly).
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The complexity of the sliding window approach

was mitigated in the pioneer OverFeat network

(Sermanet et al, 2013) by adding a regression head

to predict the object bounding box .

OverFeat

(x, y,w, h)

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 16 / 51

https://fleuret.org/ee559/


 

For each location and scale pre-de�ned from a coarse grid,

the classi�er head outputs a class and a con�dence (left);

the regression head predicts the location of the object (right).

―
Credits: Sermanet et al, 2013. 17 / 51



These bounding boxes are �nally merged by Non-Maximum Suppression to

produce the �nal predictions over a small number of objects.

―
Credits: Sermanet et al, 2013. 18 / 51



The OverFeat architecture comes with several drawbacks:

it is a disjoint system (2 disjoint heads with their respective losses, ad-hoc

merging procedure);

it optimizes for localization rather than detection;

it cannot reason about global context and thus requires signi�cant post-

processing to produce coherent detections.
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YOLO

YOLO (Redmon et al, 2015) models detection as a regression problem.

The image is divided into an  grid and for each grid cell predicts 

bounding boxes, con�dence for those boxes, and  class probabilities. These

predictions are encoded as an  tensor.

S × S B

C

S × S × (5B + C)

―
Credits: Redmon et al, 2015. 20 / 51



For , , , the network predicts a vector of size  for each

cell.

S = 7 B = 2 C = 20 30

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 21 / 51

https://fleuret.org/ee559/


The network predicts class scores and bounding-box regressions, and although

the output comes from fully connected layers, it has a 2D structure.

Unlike sliding window techniques, YOLO is therefore capable of reasoning

globally about the image when making predictions.

It sees the entire image during training and test time, so it implicitly

encodes contextual information about classes as well as their appearance.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 22 / 51

https://fleuret.org/ee559/


During training, YOLO makes the assumptions that any of the  cells

contains at most (the center of) a single object. We de�ne for every image, cell

index , predicted box  and class index 

,

 is  if there is an object in cell , and  otherwise;

 is  if there is an object in cell  and predicted box  is the most �tting

one, and  otherwise;

 is  if there is an object of class  in cell , and  and otherwise;

 the annoted bouding box (de�ned only if , and

relative in location and scale to the cell);

 is the IoU between the predicted box and the ground truth target.

S × S

i = 1, ...,S × S j = 1, ...,B
c = 1, ...,C
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 23 / 51

https://fleuret.org/ee559/


The training procedure �rst computes on each image the value of the 's and

, and then does one step to minimize the multi-part loss function

where , , , ,  and  are the network outputs.
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https://fleuret.org/ee559/


Training YOLO relies on many engineering choices that illustrate well how

involved is deep learning in practice:

pre-train the 20 �rst convolutional layers on ImageNet classi�cation;

use  input for detection, instead of ;

use Leaky ReLUs for all layers;

dropout after the �rst convolutional layer;

normalize bounding boxes parameters in ;

use a quadratic loss not only for the bounding box coordinates, but also for

the con�dence and the class scores;

reduce weight of large bounding boxes by using the square roots of the

size in the loss;

reduce the importance of empty cells by weighting less the con�dence-

related loss on them;

data augmentation with scaling, translation and HSV transformation.

448 × 448 224 × 224

[0, 1]

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 25 / 51

https://fleuret.org/ee559/


YOLO in New YorkYOLO in New York
Later bekijLater bekij…… DelenDelen

YOLO (Redmon, 2017).
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https://www.youtube.com/watch?v=YmbhRxQkLMg


Region-based CNNs
An alternative strategy to having a huge prede�ned set of box proposals is to

rely on region proposals �rst extracted from the image.

The main family of architectures following this principle are region-based

convolutional neural networks:

(Slow) R-CNN (Girshick et al, 2014)

Fast R-CNN (Girshick et al, 2015)

Faster R-CNN (Ren et al, 2015)

Mask R-CNN (He et al, 2017)
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R-CNN

This architecture is made of four parts:

1. Selective search is performed on the input image to select multiple high-

quality region proposals.

2. A pre-trained CNN (the backbone) is selected and put before the output

layer. It resizes each proposed region into the input dimensions required by

the network and uses a forward pass to output features for the proposals.

3. The features are fed to an SVM for predicting the class.

4. The features are fed to a linear regression model for predicting the

bounding-box.

―
Credits: Dive Into Deep Learning, 2020. 28 / 51

https://d2l.ai/


Selective search (Uijlings et al, 2013) groups adjacent pixels of similar texture,

color, or intensity by analyzing windows of different sizes in the image.
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Fast R-CNN

The main performance bottleneck of R-

CNN is the need to independently extract

features for each proposed region.

Fast R-CNN uses the entire image as

input to the CNN for feature extraction,

rather than each proposed region.

Fast R-CNN introduces RoI pooling for

producing feature vectors of �xed size

from region proposals of different sizes.

―
Credits: Dive Into Deep Learning, 2020. 30 / 51

https://d2l.ai/


Faster R-CNN

The performance of both R-CNN and Fast R-CNN is tied to the quality of the

region proposals from selective search.

Faster R-CNN replaces selective search with a region proposal network.

This network reduces the number of proposed regions generated, while

ensuring precise object detection.

―
Credits: Dive Into Deep Learning, 2020. 31 / 51

https://d2l.ai/


YOLO (v2) vs YOLO 9000 vs SSD vs Faster RCNN

Bekijken op

YoloV2, Yolo 9000, YoloV2, Yolo 9000, SSD Mobilenet, Faster RSSD Mobilenet, Faster R……
Later bekijLater bekij…… DelenDelen
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https://www.youtube.com/watch?v=V4P_ptn2FF4&embeds_referring_euri=http%3A%2F%2F0.0.0.0%3A8002%2F%3Fp%3Dlecture6.md
https://www.youtube.com/watch?v=V4P_ptn2FF4


Takeaways

One-stage detectors (YOLO, SSD, RetinaNet, etc) are fast for inference but

are usually not the most accurate object detectors.

Two-stage detectors (Fast R-CNN, Faster R-CNN, R-FCN, Light head R-CNN,

etc) are usually slower but are often more accurate.

All networks depend on lots of engineering decisions.
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(demo)
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https://colab.research.google.com/gist/kirisakow/325a557d89262e8d6a4f2918917e82b4/real-time-object-detection-in-webcam-video-stream-using-ultralytics-yolov8.ipynb


Segmentation
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Segmentation is the task of partitioning an image, at the pixel level, into regions:

Semantic segmentation: All pixels in an image are labeled with their class

(e.g., car, pedestrian, road).

Instance segmentation: Pixels of detected objects are labeled with an

instance ID (e.g., car 1, car 2, pedestrian 1).

Panoptic segmentation: Combines semantic and instance segmentation.

All pixels in an image are labeled with a class and an instance ID (if

applicable).

―
Credits: Dive Into Deep Learning, 2020. 36 / 51

https://d2l.ai/


The deep learning approach casts semantic segmentation as pixel

classi�cation. Convolutional networks can be used for that purpose, but with a

few adaptations.
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―
Credits: CS231n, Lecture 11, 2018. 38 / 51

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf


―
Credits: CS231n, Lecture 11, 2018. 39 / 51

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf


Transposed convolution

A transposed convolution is a convolution where the implementation of the

forward and backward passes are swapped.

Given a convolutional kernel ,

the forward pass is implemented as  with appropriate

reshaping, thereby effectively up-sampling an input  into a larger one;

the backward pass is computed by multiplying the loss by  instead of 

.

u

v(h) = U v(x)T

v(x)

U
UT
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U v(x)T

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛1
4
1
0
1
4
3
0
3
3
1
0
0
0
0
0

0
1
4
1
0
1
4
3
0
3
3
1
0
0
0
0

0
0
0
0
1
4
1
0
1
4
3
0
3
3
1
0

0
0
0
0
0
1
4
1
0
1
4
3
0
3
3
1⎠
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎝
⎜
⎜
⎛2
1
4
4⎠
⎟
⎟
⎞

= v(h)

=

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 2
9
6
1
6
29
30
7
10
29
33
13
12
24
16
4⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

―
Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 41 / 51

https://arxiv.org/abs/1603.07285


A fully convolutional network (FCN) is a convolutional

network that replaces the fully connected layers with

convolutional layers and transposed convolutional layers.

For semantic segmentation, the simplest design of a fully

convolutional network consists in:

using a (pre-trained) convolutional network for

downsampling and extracting image features;

replacing the dense layers with a  convolution

layer to transform the number of channels into the

number of categories;

upsampling the feature map to the size of the input

image by using one (or several) transposed

convolution layer(s).

Fully convolutional networks (FCNs)

1 × 1
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Contrary to fully connected networks, the dimensions of the output of a fully

convolutional network is not �xed. It directly depends on the dimensions of the

input, which can be images of arbitrary sizes.
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... ...

The previous encoder-decoder architecture is a simple and effective way to

perform semantic segmentation.

However, the low-resolution representation in the middle of the network can be

a bottleneck for the segmentation performance, as it must retain enough

information to reconstruct the high-resolution segmentation map.

―
Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 44 / 51

https://udlbook.github.io/udlbook/


UNet

The UNet architecture is an encoder-decoder architecture with skip connections

(usually concatenations) that directly connect the encoder and decoder layers

at the same resolution. In this way, the decoder can use both

the corresponding high-resolution features from the encoder, and

the lower-resolution features from the previous layers.

―
Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 45 / 51

https://udlbook.github.io/udlbook/


3d segmentation results using a UNet architecture.

(a) Slices of a 3d volume of a mouse cortex, (b) A UNet is used to classify voxels

as either inside or outside neutrites. Connected regions are shown with

different colors, (c) 5-member ensemble of UNets.

―
Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 46 / 51

https://udlbook.github.io/udlbook/


(demo)
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Segmentation is a natural extension

of object detection. For example,

Mask R-CNN extends the Faster R-

CNN model for semantic

segmentation:

The RoI pooling layer is replaced

with an RoI alignment layer.

It branches off to an FCN for

predicting a semantic

segmentation mask.

Object detection combined with

mask prediction enables

instance segmentation.

Mask R-CNN

―
Credits: Dive Into Deep Learning, 2020. 48 / 51

https://d2l.ai/


―
Credits: He et al, 2017. 49 / 51

https://arxiv.org/abs/1703.06870


Mask RCNN - COCO - Mask RCNN - COCO - instance segmentationinstance segmentation
Later bekijLater bekij…… DelenDelen
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https://www.youtube.com/watch?v=OOT3UIXZztE


It is noteworthy that for detection and segmentation, there is an heavy re-use of

large networks trained for classi�cation.

The models themselves, as much as the source code of the algorithm that

produced them, or the training data, are generic and re-usable assets.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 51 / 51

https://fleuret.org/ee559/


The end.
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