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How to build neural networks for (some) advanced computer vision tasks.

e Classification
e Object detection

e Segmentation



Classification + Localization Object Detection

Semantic Segmentation Instance Segmentation

Credits: Aurélien Géron, 2018. 3/51


https://www.oreilly.com/content/introducing-capsule-networks/

Classification

A few tips when using convnets for classifying images.
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Convolutional neural networks

e Convolutional neural networks combine convolution, pooling and fully
connected layers.

e They achieve state-of-the-art results for spatially structured data, such as
images, sound or text.
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Credits: Dive Into Deep Learning, 2020.


https://d2l.ai/

For classification,

 the activation in the output layer is a Softmax activation producing a vector

h € AY of probability estimates P(Y = i|x), where C'is the number of
classes;

 the loss function is the cross-entropy loss.



Image augmentation

The lack of data is the biggest limit to the performance of deep learning
models.

e Collecting more data is usually expensive and laborious.

e Synthesizing data is complicated and may not represent the true
distribution.

e Augmenting the data with base transformations is simple and efficient.
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Credits: DeepAugment, 2020.
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https://github.com/barisozmen/deepaugment

Pre-trained models

e Training a model on natural images, from scratch, takes days or weeks.

« Many models pre-trained on large datasets are publicly available for
download. These models can be used as feature extractors or for smart
initialization.

e The models themselves should be considered as generic and re-usable
assets.



Transfer learning

« Take a pre-trained network, remove the last layer(s) and then treat the rest
of the network as a fixed feature extractor.

e Train a model from these features on a new task.

e Often better than handcrafted feature extraction for natural images, or
better than training from data of the new task only.
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Figure 2. Feature extraction from pre-trained convolutional neural networks

Credits: Mormont et al, Comparison of deep transfer learning strategies for digital pathology, 2018.
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http://hdl.handle.net/2268/222511
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Fine-tuning

Same as for transfer learning, but also fine-tune the weights of the pre-trained
network by training the whole network on the new task.

Credits: Dive Into Deep Learning, 2020.


https://d2l.ai/

For models pre-trained on ImageNet, transferred/fine-tuned networks usually
work even when the input images are from a different domain (e.g., biomedical

images, satellite images or paintings).
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Fig. 2: Comparison between the fine tuning approach versus the off the shelf one when
classifying the material of the heritage objects of the Rijksmuseum dataset. We observe
how the first approach (as reported by the the dashed lines) leads to significant improve-
ments when compared to the latter one (reported by the dash-dotted lines) for three out
of four neural architectures. Furthermore, we can also observe how training a DCNN
from scratch leads to worse results when compared to fine-tuned architectures which

have been pre-trained on ImageNet (solid orange line).

Credits: Matthia Sabatelli et al, Deep Transfer Learning for Art Classification Problems, 2018.


http://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Sabatelli_Deep_Transfer_Learning_for_Art_Classification_Problems_ECCVW_2018_paper.pdf

Object detection



The simplest strategy to move from image classification to object detection is
to classify local regions, at multiple scales and locations.

Parsing at fixed scale Final list of detections

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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https://fleuret.org/ee559/

The sliding window approach evaluates a classifier at a large number of
locations and scales.

This approach is usually computationally expensive as performance directly
depends on the resolution and number of the windows fed to the classifier (the
more the better, but also the more costly).
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OverFeat
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The complexity of the sliding window approach
was mitigated in the pioneer OverFeat network e b lvers
(Sermanet et al, 2013) by adding a regression head

to predict the object bounding box (z, y, w, h). \/‘
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL.


https://fleuret.org/ee559/
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For each location and scale pre-defined from a coarse grid,

« the classifier head outputs a class and a confidence (left);

e the regression head predicts the location of the object (right).

Credits: Sermanet et al, 2013. 17 /51



These bounding boxes are finally merged by Non-Maximum Suppression to
produce the final predictions over a small number of objects.

Credits: Sermanet et al, 2013. 18/51



The OverFeat architecture comes with several drawbacks:

e itis adisjoint system (2 disjoint heads with their respective losses, ad-hoc
merging procedure);

it optimizes for localization rather than detection;

e it cannot reason about global context and thus requires significant post-
processing to produce coherent detections.
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YOLO
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YOLO (Redmon et al, 2015) models detection as a regression problem.

The image is divided into an S x S grid and for each grid cell predicts B
bounding boxes, confidence for those boxes, and C' class probabilities. These
predictions are encoded asan S x § x (5B + C) tensor.

Credits: Redmon et al, 2015. 20/ 51



ForS =7 B = 2, C = 20, the network predicts a vector of size 30 for each
cell.
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL.


https://fleuret.org/ee559/

The network predicts class scores and bounding-box regressions, and although
the output comes from fully connected layers, it has a 2D structure.

« Unlike sliding window techniques, YOLO is therefore capable of reasoning
globally about the image when making predictions.

|t sees the entire image during training and test time, so it implicitly
encodes contextual information about classes as well as their appearance.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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https://fleuret.org/ee559/

During training, YOLO makes the assumptions that any of the S x S cells
contains at most (the center of) a single object. We define for every image, cell
indexz =1,...,.5 x S, predicted box 7 = 1, ..., B and class index
c=1,...,C,

1;?bj is 1 if there is an object in cell 7, and 0 otherwise;

12];‘j is 1if there is an object in cell 2 and predicted box 7 is the most fitting
one, and 0 otherwise;

pi.c is 1if thereis an object of class cin cell 7, and 0 and otherwise;

x;, Yi, w;, h; the annoted bouding box (defined only if 1§bj =1, and
relative in location and scale to the cell);

c; j is the loU between the predicted box and the ground truth target.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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https://fleuret.org/ee559/
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where p;.c, Z; ;, Ui j, Wi j, hi j and ¢; ; are the network outputs.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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https://fleuret.org/ee559/

Training YOLO relies on many engineering choices that illustrate well how
involved is deep learning in practice:

pre-train the 20 first convolutional layers on ImageNet classification;
use 448 x 448 input for detection, instead of 224 x 224;

use Leaky RelLUs for all layers;

dropout after the first convolutional layer;

normalize bounding boxes parameters in [0, 1];

use a quadratic loss not only for the bounding box coordinates, but also for
the confidence and the class scores;

reduce weight of large bounding boxes by using the square roots of the
size in the loss;

reduce the importance of empty cells by weighting less the confidence-
related loss on them);

data augmentation with scaling, translation and HSV transformation.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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https://fleuret.org/ee559/
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YOLO (Redmon, 2017).
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https://www.youtube.com/watch?v=YmbhRxQkLMg

Region-based CNNs

An alternative strategy to having a huge predefined set of box proposals is to
rely on region proposals first extracted from the image.

The main family of architectures following this principle are region-based
convolutional neural networks:

e (Slow) R-CNN (Girshick et al, 2014)
e Fast R-CNN (Girshick et al, 2015)

e Faster R-CNN (Ren et al, 2015)

e Mask R-CNN (He et al, 2017)
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R-CNN

This architecture is made of four parts:

1. Selective search is performed on the input image to select multiple high-
quality region proposals.

2. A pre-trained CNN (the backbone) is selected and put before the output

layer. It resizes each proposed region into the input dimensions required by
the network and uses a forward pass to output features for the proposals.

3. The features are fed to an SVM for predicting the class.

4. The features are fed to a linear regression model for predicting the

bounding-box.

Category
prediction

Bounding box
prediction

CNN

Selective search

[\

Credits: Dive Into Deep Learning, 2020.
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https://d2l.ai/

Selective search (Uijlings et al, 2013) groups adjacent pixels of similar texture,
color, or intensity by analyzing windows of different sizes in the image.



Fast R-CNN

e The main performance bottleneck of R-
CNN is the need to independently extract
features for each proposed region.

e Fast R-CNN uses the entire image as
input to the CNN for feature extraction,
rather than each proposed region.

e Fast R-CNN introduces Rol pooling for
producing feature vectors of fixed size
from region proposals of different sizes.

Credits: Dive Into Deep Learning, 2020.
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Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (Rols) are input into a fully convolutional
network. Each Rol is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per Rol: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.
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https://d2l.ai/
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Region proposal network

Faster R-CNN

e The performance of both R-CNN and Fast R-CNN is tied to the quality of the
region proposals from selective search.

o Faster R-CNN replaces selective search with a region proposal network.

e This network reduces the number of proposed regions generated, while
ensuring precise object detection.

Credits: Dive Into Deep Learning, 2020.


https://d2l.ai/
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YOLO (v2) vs YOLO 9000 vs SSD vs Faster RCNN
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https://www.youtube.com/watch?v=V4P_ptn2FF4&embeds_referring_euri=http%3A%2F%2F0.0.0.0%3A8002%2F%3Fp%3Dlecture6.md
https://www.youtube.com/watch?v=V4P_ptn2FF4

Takeaways

e One-stage detectors (YOLO, SSD, RetinaNet, etc) are fast for inference but
are usually not the most accurate object detectors.

e Two-stage detectors (Fast R-CNN, Faster R-CNN, R-FCN, Light head R-CNN,
etc) are usually slower but are often more accurate.

e All networks depend on lots of engineering decisions.



(demo)
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https://colab.research.google.com/gist/kirisakow/325a557d89262e8d6a4f2918917e82b4/real-time-object-detection-in-webcam-video-stream-using-ultralytics-yolov8.ipynb

Segmentation



Detection
(Bounding Boxes)

Instance Segmentation Semantic Segmentation Panoptic Segmentation

Segmentation is the task of partitioning an image, at the pixel level, into regions:

« Semantic segmentation: All pixels in an image are labeled with their class
(e.g., car, pedestrian, road).

 Instance segmentation: Pixels of detected objects are labeled with an
instance ID (e.g., car 1, car 2, pedestrian 1).

e Panoptic segmentation: Combines semantic and instance segmentation.
All pixels in an image are labeled with a class and an instance ID (if
applicable).

Credits: Dive Into Deep Learning, 2020. 36/51


https://d2l.ai/

The deep learning approach casts semantic segmentation as pixel
classification. Convolutional networks can be used for that purpose, but with a
few adaptations.



Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv Conv argmax
—_ —_— —_— —_—

Input: .
3x |P| xW Y Scores: Predictions:

CxHxW HxW

Problem: i ¢ Convolutions:
roblem: convolutions a DxHxW

original image resolution will
be very expensive ...

Credits: CS231n, Lecture 11,2018. 38/51


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf

Downsampling: Design network as a bunch of convolutional layers, with
Pooling, strided downsampling and upsampling inside the network!

convolution

Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4

Low-res:
D, x H/4 x W/4
High-res: High-res:

3xHxW D, x H2 x W/2 D, x H/2 x W/2

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Credits: CS231n, Lecture 11,2018.

Upsampling:
7?7

Predictions:
HxW
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http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf

Transposed convolution

A transposed convolution is a convolution where the implementation of the
forward and backward passes are swapped.

Given a convolutional kernel u,
« the forward pass is implemented as v(h) = U?v(x) with appropriate
reshaping, thereby effectively up-sampling an input v(x) into a larger one;

« the backward pass is computed by multiplying the loss by U instead of
U’

40/5
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Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 41 /51


https://arxiv.org/abs/1603.07285

Fully convolutional networks (FCNs)

A fully convolutional network (FCN) is a convolutional
network that replaces the fully connected layers with
convolutional layers and transposed convolutional layers.

For semantic segmentation, the simplest design of a fully
convolutional network consists in:

e using a (pre-trained) convolutional network for
downsampling and extracting image features;

e replacing the dense layers with a1 x 1 convolution
layer to transform the number of channels into the
number of categories;

e upsampling the feature map to the size of the input
image by using one (or several) transposed
convolution layer(s).

Background

Dog  cat

/

Transposed Conv

A

1 x 1 Conv
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Contrary to fully connected networks, the dimensions of the output of a fully
convolutional network is not fixed. It directly depends on the dimensions of the
input, which can be images of arbitrary sizes.



SO

P
+
3

O Ul s
» ‘3) » ‘5 » > D> > D S D &
Qoo %’Qoo $o° 4(5 :&SOO ‘b+ QOQOQO Qoo 4:5+ \3800 4%+ K\Qo§{5+\3?0 +?°O‘b+\+ o
S I et

O
QO&\QO&\ <

The previous encoder-decoder architecture is a simple and effective way to
perform semantic segmentation.

However, the low-resolution representation in the middle of the network can be
a bottleneck for the segmentation performance, as it must retain enough
information to reconstruct the high-resolution segmentation map.

Credits: Simon J.D. Prince, Understanding Deep Learning, 2023.
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https://udlbook.github.io/udlbook/
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e the corresponding high-resolution features from the encoder, and

the lower-resolution features from the previous layers.

Crop and concatenate

The UNet architecture is an encoder-decoder architecture with skip connections
(usually concatenations) that directly connect the encoder and decoder layers
at the same resolution. In this way, the decoder can use both

Crop and concatenate

Crop and concatenate

Crop and concatenate
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Credits: Simon J.D. Prince, Understanding Deep Learning, 2023.
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https://udlbook.github.io/udlbook/
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3d segmentation results using a UNet architecture.
(a) Slices of a 3d volume of a mouse cortex, (b) A UNet is used to classify voxels
as either inside or outside neutrites. Connected regions are shown with
different colors, (c) 5--member ensemble of UNets.

Credits: Simon J.D. Prince, Understanding Deep Learning, 2023.


https://udlbook.github.io/udlbook/

(demo)
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Mask R-CNN

Segmentation is a natural extension
of object detection. For example,
Mask R-CNN extends the Faster R-
CNN model for semantic
segmentation:

e The Rol pooling layer is replaced
with an Rol alignment layer.

e It branches off to an FCN for
predicting a semantic
segmentation mask.

e Object detection combined with
mask prediction enables
instance segmentation.

Credits: Dive Into Deep Learning, 2020.
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https://d2l.ai/

Credits: He etal, 2017. 49 /51


https://arxiv.org/abs/1703.06870
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https://www.youtube.com/watch?v=OOT3UIXZztE

It is noteworthy that for detection and segmentation, there is an heavy re-use of
large networks trained for classification.

The models themselves, as much as the source code of the algorithm that
produced them, or the training data, are generic and re-usable assets.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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https://fleuret.org/ee559/

The end.

51/51



