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Today

How to make neural networks see?

Visual perception

Convolutions

Pooling

Convolutional networks
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Visual perception
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Visual perception

In 1959-1962, David Hubel and Torsten Wiesel identify the neural basis of

information processing in the visual system. They are awarded the Nobel Prize
of Medicine in 1981 for their discovery.
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https://www.youtube.com/watch?v=IOHayh06LJ4
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https://www.youtube.com/watch?v=OGxVfKJqX5E

Inductive biases

Can we equip neural networks with inductive biases tailored for vision?

e Locality (as in simple cells)
 Invariance translation (as in complex cells)

 Hierarchical compositionality (as in hypercomplex cells)
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Invariance and equivariance to translation.

Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 8/56


https://udlbook.github.io/udlbook/

Neocognitron

In 1980, Fukushima proposes a direct neural network implementation of the
hierarchy model of the visual nervous system of Hubel and Wiesel.

fe————— visual area »j¢-associalion area —
retim—-LGB—-sin:npleﬂco@x*mﬁx—mﬁgi*?--..9“1:3'“]?0"‘9" e Built Upo'n
| ; = | = convolutions and
Up Uy ——> Uy TP U5y TP Uss™>Ues T enables the

composition of a
feature hierarchy.

» Biologically-inspired
training algorithm,
which proves to be
largely inefficient.

Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980.
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https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

Convolutional networks

In the 1980-90s, LeCun trains a convolutional network by backpropagation. He
advocates for end-to-end feature learning in image classification.

TO OSTTPETT

L ] LT TILT i
Vi LR For/ o [l Al -l Al TV

L,‘"j’ 5 E -fj AP T2 T2
Q g @ g LE@P2ANA I T

<7

DT INPLTT

Credits: LeCun et al, Handwritten Digit Recognition with a Back-Propagation Network, 1990. 10/56


http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf

Convolutions
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Convolutional layers

A convolutional layer applies the same linear transformation locally everywhere
while preserving the signal structure.

Output

h

W—w+1

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 12 /56


https://fleuret.org/ee559/

1d convolution

For the one-dimensional input x € R" and the convolutional kernel u € RY,
the discrete convolution x ® uis a vector of size W — w + 1 such that

k@] = 3 Xpmyitin.

Technically, ® denotes the cross-correlation operator. However, most machine
learning libraries call it convolution.
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Convolutions can implement differential operators:

(0,0,0,0,1,2,3,4,4,4,4)® (—-1,1) = (0,0,0,1,1,1,1,0,0,0)

m@m__rrm_

or crude template matchers:

(0,0,3,0,0,0,0,0,3,0,3,0,0,0) ® (1,0,1) = (3,0,3,0,0,0,3,0,6,0,3,0)

UL e IHLL

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

1
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https://fleuret.org/ee559/

2d convolution

For the 2d input tensor x € RZ*W and the 2d convolutional kernel u € R**%,
the discrete convolution x ® u is a matrix of size
(H—h+1) x (W —w+ 1) such that

(X ® u) [.77 Z] — Xn+j,m+iUn,m
0

S
g}
i

15/56



Channels

The 2d convolution can be extended to tensors with multiple channels.

For the 3d input tensorx € RE*HXW and the 3d convolutional kernel

u € RO the discrete convolution x ® uis a tensor of size
(H—h+1)x (W —w+ 1) such that

Q
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—1 —1

(X ® u) [.77 7’] — Xen+j,m+iUen,m
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Convolutional layers

A convolutional layer is defined by a set of K kernels uy of size C' X h x w. It
applies the 2d convolution operation to the input tensor x of size C' x H x W
to produce a set of K feature maps og.
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 18/56


https://fleuret.org/ee559/

Convolutions have three additional parameters:

e The padding specifies the size of a zeroed frame added arount the input.
» The stride specifies a step size when moving the kernel across the signal.

e The dilation modulates the expansion of the filter without adding weights.

Padding=1 Stride=2 Dilation=2

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 19/56


https://fleuret.org/ee559/

Equivariance

Formally, a function f is equivariant to g if f(g(x)) = g(f(x)).

Parameter sharing used in a convolutional layer causes the layer to be
equivariant to translation.

RESEARCH

If an object moves in the input image, its representation will move the same amount in the output.

Credits: LeCun et al, Gradient-based learning applied to document recognition, 1998. 20/56



Convolutions as matrix multiplications

As a guiding example, let us consider the convolution of single-channel tensors
x € R¥* and u € R3%3:

X®u=

®
W~
W = =
—_ O =

(122 148
—\126 134

S W
ot O 00 Ot
J S 00 0o
CO =~ 00 =

21/56



The convolution operation can be equivalently re-expressed as a single matrix
multiplication:

« the convolutional kernel uis rearranged as a sparse Toeplitz circulant
matrix, called the convolution matrix:

1 41014 3 033100000
U:0141014303310000
o 00 01 4101436503310
o 00001 41014360 3 31

e the input x is flattened row by row, from top to bottom:
v(x)=(4 5 8 7 1 8 8 8 3 6 6 46 5 7 8
Then,

Uv(x) = (122 148 126 134)"

which we can reshape to a 2 x 2 matrix to obtain x ® u.
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RHXW

The same procedure generalizes to x € and convolutional kernel

u € R™¥ such that:
e the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix
Uofshape (H — h+ 1)(W —w + 1) x HW where
o each row ? identifies an element of the output feature map,
o each columnj identifies an element of the input feature map,
o thevalue Ui,j corresponds to the kernel value the elementj is multiplied with in output 2;
« the input x is flattened into a column vector v(x) of shape HW x 1;

e the output feature map x ® u is obtained by reshaping the
(H—h+1)(W —w+ 1) x 1 column vector Uv(x) as a
(H—h+1) x (W —w+ 1) matrix.

Therefore, a convolutional layer is a special case of a fully connected layer:

h=x®u< vh) = Uy(x) < vh) = WHy(x)
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b) T1 Ty T3 Ty Ts Te d) X1 Ty T3 Ty Ts Tg f) T1 Ty T3 T4 Ty Tg
hy
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hs
he

Fully connected vs convolutional layers.

Credits: Simon J.D. Prince, Understanding Deep Learning, 2023.


https://udlbook.github.io/udlbook/

Pooling
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When the input volume is large, pooling layers can be used to reduce the input
dimension while preserving its global structure, in a way similar to a down-
scaling operation.
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Pooling

Consider a pooling area of size h X w and a 3d input tensor x € RE

« Max-pooling produces a tensor o € RE*"*¢ such that

Oc,j,i — ImMaxX Xcrjin,si+m:-
n<h,m<w

« Average pooling produces a tensor o € RE*"*$ such that

h

1
Oc¢ i — —hw E E Xe,rj+n,si+m-

-1 w-—1
n=0 m=0

Pooling is very similar in its formulation to convolution.

(rh)x(sw) .
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Input

Output

sh

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 28/56


https://fleuret.org/ee559/

Invariance

Formally, a function f is invariant to g if f(g(x)) = f(x).

Pooling layers provide invariance to any permutation inside one cell, which
results in (pseudo-)invariance to local translations.

Input

Output _‘

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 29/56


https://fleuret.org/ee559/

Convolutional networks
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A convolutional network is generically defined as a composition of
convolutional layers (CONV), pooling layers (POOL), linear rectifiers (ReLU) and
fully connected layers (FC).

convolution linear max convolution
rectification pooling

convolution layer pooling layer

31/56



The most common convolutional network architecture follows the pattern:
INPUT — [[CONV — ReLU|* N — POOL?|*M — [FC — ReLU|*K — FC
where:

e * indicates repetition;
 POOL? indicates an optional pooling layer,
e NV >0(andusually N <3),M > 0, K > 0 (and usually K < 3);

 the last fully connected layer holds the output (e.g., the class scores).
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Some common architectures for convolutional networks following this pattern
include:

e« INPUT — FC, which implements a linear classifier (N = M = K = 0).

INPUT — [FC — ReLU|*xK — FC, which implements a K-layer MLP,
INPUT — CONV — ReLU — FC.

INPUT — [CONV — ReLU — POOL]*2 — FC — ReLU — FC.

INPUT — [[CONV — ReLU|*2 — POOL|*3 — [FC — ReLU]*2 — FC.
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(demo)
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Architectures (some)

Top-5 accuracy [%]

Credits: Bianco etal, 2018.
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https://arxiv.org/abs/1810.00736

LeNet-5 (LeCun et al, 1998)

Composition of two CONV + POOL layers, followed by a block of fully-connected

layers.
convolution convolution pooling dense
pooling dense
] dense
: 3 |z
T 5oE
—— il II g 3
//T
L| 6@14x14 —
= S2 feature map r%f}
. X
28x28 image 6@28x28 16@10x10 S4 feature map
C1 feature map C3 feature map

Credits: Dive Into Deep Learning, 2020.

(@)


https://d2l.ai/

LeNet-1 (LeCun et al, 1993)
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https://www.youtube.com/watch?v=FwFduRA_L6Q&embeds_referring_euri=http%3A%2F%2F0.0.0.0%3A8002%2F%3Fp%3Dlecture5.md
https://www.youtube.com/watch?v=FwFduRA_L6Q

Dense (1000)

AlexNet (Krizhevsky et al, 2012)

Composition of a 8-layer convolutional neural |

network with a 3-layer MLP. |

The original implementation was made of

two parts such that it could fit within two |

)
| Dense (4096) |
)
| Dense (4096) |
t
| 3x3 MaxPool, stride 2 |
t
Dense (10) 3x3 Conv (384), pad 1
t t
Dense (84) | | 3x3 Conv (384), pad 1 |
t t
Dense (120) | | 3x3 Conv (384), pad 1 |
t t
2x2 AvgPool, stride 2 3x3 MaxPool, stride 2
t t
5x5 Conv (16) | | 5x5 Conv (256), pad 2 |
t t

GPUs.

| 2x2 AvgPool, stride 2 |

| 3x3 MaxPool, stride 2 |

| 5x5 Conv (6), pad 2 |

| 11x11 Conv (96), stride 4 |

!

t

image (28x28)

image (3x224x224)

Credits: Dive Into Deep Learning, 2020.

LeNet vs. AlexNet


https://d2l.ai/

VGG (Simonyan and
Zisserman, 2014)

Composition of 5 VGG blocks
consisting of CONV + POOL
layers, followed by a block of
fully connected layers.

The network depth increased
up to 19 layers, while the
kernel sizes reduced to 3.

Credits: Dive Into Deep Learning, 2020.

AlexNet

Dense (1000) |

t

Dense (4096) |

t

Dense (4096) |

t

3x3 MaxPool, stride 2

t

3x3 Conv (384), pad 1

t

t

3x3 Conv (384), pad 1

t

3x3 Conv (384), pad 1 |
3x3 MaxPool, stride 2 |

t

5x5 Conv (256), pad 2 |

t

3x3 MaxPool, stride 2 |

t

11x11 Conv (96), stride 4 |

VGG

Dense (1000)

t
| Dense (4096) |
t
| Dense (4096) |
)
VGG block
i
| 3x3 MaxPool, stride 2 |
3
t
| 3x3 Conv, pad 1 | 1
t
[}
f [}
| 3x3 Conv, pad 1 | [

AlexNet vs. VGG



https://d2l.ai/

The effective receptive field is the part of the visual input that affects a given
unit indirectly through previous convolutional layers.

e It grows linearly with depth when chaining convolutional layers.

It grows exponentially with depth when pooling layers (or strided
convolutions) are interleaved with convolutional layers.
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Input, x Hidden layer, H;

Hidden layer, H;

OO00000000
Q
Q
@)

Input, x Hidden layer, H;

Credits: Simon J.D. Prince, Understanding Deep Learning, 2023.

Input, x

Hidden layer, Hy

O c R4><5><3

Hidden layer, H;

OO000)

Hidden layer, H3

Hidden layer, Hy

Hidden layer, H3

Oc R3><4><3

Hidden layer, Hy

Qc R5x6><3

(OO0

Hidden layer, Hy
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https://udlbook.github.io/udlbook/

ResNet (He et al, 2015)

Composition of convolutional and pooling layers organized in
a stack of residual blocks. Extensions consider more residual
blocks, up to a total of 152 layers (ResNet-152).

i 4
| RelLu | | RelLu |
&— ®
[ ?"""1 [ B
: | Batch Norm | : : | Batch Norm | :
| I ! l 1 |
: | 3x3 Conv | 1 ! | 3x3 Conv | I
1 ! I

: i | : 1 |
| | RelLu | : | | RelLu | : | 1x1 Conv
| | | [
| T | | * [
: | Batch Norm | : : | Batch Norm | :
: 1 ! : 1 !
: | 3x3 Conv | 1 : | 3x3 Conv | |
I | I I l

_—

X X

Regular ResNet block vs. ResNet block with 1 X 1 convolution.

Credits: Dive Into Deep Learning, 2020.

Global Average Pool

3x3 Max Pooling

$X%00|q 1I9NS®Y XE H


https://d2l.ai/

Training networks of this depth is made possible because of the skip
connections h = x + f(x) in the residual blocks. They allow the gradients to

shortcut the layers and pass through without vanishing.

Credits: Dive Into Deep Learning, 2020.

T

Activation function

Weight layer

*

Activation function

¢

Weight layer

1

Activation function

f(x) + x

Weight layer

*

Activation function

*

Weight layer



https://d2l.ai/

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.
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The benefits of depth

28.2

152 layers

\

\

\

‘ 22 layers 1 ‘ 19 Iayers ’
|

3 57 I_ I 8 Iayers 8 layers ‘ shallow

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet
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... and width and resolution (Tan and Le, 2019)
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Figure 3. Scaling Up a Baseline Model with Different Network Width (w), Depth (d), and Resolution (r) Coefficients. Bigger
networks with larger width, depth, or resolution tend to achieve higher accuracy, but the accuracy gain quickly saturate after reaching

80%, demonstrating the limitation of single dimension scaling. Baseline network is described in Table 1.

Credits: Tan and Le, 2019.


https://arxiv.org/abs/1905.11946.pdf

Under the hood



Understanding what is happening in deep neural networks after training is
complex and the tools we have are limited.

In the case of convolutional neural networks, we can look at:

e the network's kernels as images

internal activations on a single sample as images

distributions of activations on a population of samples

derivatives of the response with respect to the input

maximume-response synthetic samples

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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https://fleuret.org/ee559/

Looking at filters

LeNet's first convolutional layer, all filters.

B 37 = M T L R RN TN R RS a N RS TH

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.


https://fleuret.org/ee559/

LeNet's second convolutional layer, first 32 filters.
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL.


https://fleuret.org/ee559/

AlexNet's first convolutional layer, first 20 filters.

UL N e 2l e LN =] N
PR N=E R R AN == TR E AN
ERNSE NFEEIIEEN =S

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 52 /56


https://fleuret.org/ee559/

Maximum response samples

Convolutional networks can be inspected by looking for synthetic input images
x that maximize the activation hy 4(x) of a chosen convolutional kernel u at
layer £ and index d in the layer filter bank.

These samples can be found by gradient ascent on the input space:

ﬁg,d(x) — Hhﬂ,d(X)H?
Xg ~ U[O, 1]C’><H><W

Xe11 = X¢ + YV Lra(xy)

Here, L, 4(x) represents the L2 norm of the activation hy 4(x), x is the initial
random input, x;, is the updated input at iteration t 4 1, and -y is the learning
rate.
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VGG-16, convolutional layer 1-1, a few of the 64 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 /56


https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 2-1, a few of the 128 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 /56


https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 3-1, a few of the 256 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 /56


https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 4-1, a few of the 512 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 /56


https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

VGG-16, convolutional layer 5-1, a few of the 512 filters

Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 /56


https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

The network appears to learn a hierarchical composition of patterns:

e The first layers seem to encode basic features such as direction and color.

e These basic features are then combined to form more complex textures,
such as grids and spots.

e Finally, these textures are further combined to create increasingly intricate
patterns.

Low-Level| |Mid-Level| [High-Level Trainable
— — —
Feature Feature Feature Classifier
4 4 |

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Ferqus 201 3]
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Biological plausibility

Encoding Decoding

Neurons Behavior

a Stimulus

Spatial convolution

over image input

Operations in linear-nonlinear layer

=)
B0
@y

Yl Threshold Pool Normalize
Filter

'‘Deep hierarchical neural networks are beginning to transform neuroscientists’
ability to produce quantitatively accurate computational models of the sensory
systems, especially in higher cortical areas where neural response properties had

previously been enigmatic.”

Credits: Yamins et al, Using goal-driven deep learning models to understand sensory cortex, 2016.
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The end.
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