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Today
How to make neural networks see?

Visual perception

Convolutions

Pooling

Convolutional networks
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Visual perception
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Visual perception
In 1959-1962, David Hubel and Torsten Wiesel identify the neural basis of

information processing in the visual system. They are awarded the Nobel Prize

of Medicine in 1981 for their discovery.
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Hubel and Wiesel Cat ExperimentHubel and Wiesel Cat Experiment
Later bekijLater bekij…… DelenDelen
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https://www.youtube.com/watch?v=IOHayh06LJ4


04 2 Simple Complex Cells04 2 Simple Complex Cells
Later bekijLater bekij…… DelenDelen
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https://www.youtube.com/watch?v=OGxVfKJqX5E


Inductive biases
Can we equip neural networks with inductive biases tailored for vision?

Locality (as in simple cells)

Invariance translation (as in complex cells)

Hierarchical compositionality (as in hypercomplex cells)
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Invariance and equivariance to translation.

―
Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 8 / 56

https://udlbook.github.io/udlbook/


Built upon

convolutions and

enables the

composition of a

feature hierarchy.

Biologically-inspired

training algorithm,

which proves to be

largely ine�cient.

Neocognitron

In 1980, Fukushima proposes a direct neural network implementation of the

hierarchy model of the visual nervous system of Hubel and Wiesel.

―
Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980. 9 / 56

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf


Convolutional networks

In the 1980-90s, LeCun trains a convolutional network by backpropagation. He

advocates for end-to-end feature learning in image classi�cation.

―
Credits: LeCun et al, Handwritten Digit Recognition with a Back-Propagation Network, 1990. 10 / 56

http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf


Convolutions
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Convolutional layers
A convolutional layer applies the same linear transformation locally everywhere

while preserving the signal structure.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 12 / 56

https://fleuret.org/ee559/


1d convolution

For the one-dimensional input  and the convolutional kernel ,

the discrete convolution  is a vector of size  such that

Technically,  denotes the cross-correlation operator. However, most machine

learning libraries call it convolution.

x ∈ RW u ∈ Rw

x ⊛ u W − w + 1

(x ⊛ u)[i] = x u .
m=0

∑
w−1

m+i m

⊛
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Convolutions can implement differential operators:

or crude template matchers:

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4)⊛ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0)

(0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0)⊛ (1, 0, 1) = (3, 0, 3, 0, 0, 0, 3, 0, 6, 0, 3, 0)

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 14 / 56

https://fleuret.org/ee559/


2d convolution

For the 2d input tensor  and the 2d convolutional kernel ,

the discrete convolution  is a matrix of size 

 such that

x ∈ RH×W u ∈ Rh×w

x ⊛ u
(H − h+ 1) × (W − w + 1)

(x ⊛ u)[j, i] = x u
n=0

∑
h−1

m=0

∑
w−1

n+j,m+i n,m
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Channels

The 2d convolution can be extended to tensors with multiple channels.

For the 3d input tensor  and the 3d convolutional kernel 

, the discrete convolution  is a tensor of size 

 such that

x ∈ RC×H×W

u ∈ RC×h×w x ⊛ u
(H − h+ 1) × (W − w + 1)

(x ⊛ u)[j, i] = x u
c=0

∑
C−1

n=0

∑
h−1

m=0

∑
w−1

c,n+j,m+i c,n,m
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Convolutional layers

A convolutional layer is de�ned by a set of  kernels  of size . It

applies the 2d convolution operation to the input tensor  of size 

to produce a set of  feature maps .

K uk C × h× w
x C ×H ×W

K ok
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―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 18 / 56

https://fleuret.org/ee559/


Padding=1 Stride=2 Dilation=2

Convolutions have three additional parameters:

The padding speci�es the size of a zeroed frame added arount the input.

The stride speci�es a step size when moving the kernel across the signal.

The dilation modulates the expansion of the �lter without adding weights.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 19 / 56

https://fleuret.org/ee559/


Equivariance

Formally, a function  is equivariant to  if .

Parameter sharing used in a convolutional layer causes the layer to be

equivariant to translation.

If an object moves in the input image, its representation will move the same amount in the output.

f g f (g(x)) = g(f (x))

―
Credits: LeCun et al, Gradient-based learning applied to document recognition, 1998. 20 / 56



Convolutions as matrix multiplications
As a guiding example, let us consider the convolution of single-channel tensors 

 and :x ∈ R4×4 u ∈ R3×3

x ⊛ u = ⊛ =

⎝
⎜
⎜
⎛4
1
3
6

5
8
6
5

8
8
6
7

7
8
4
8⎠
⎟
⎟
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⎝

⎛1
1
3

4
4
3

1
3
1⎠

⎞
(
122
126

148
134)

21 / 56



The convolution operation can be equivalently re-expressed as a single matrix

multiplication:

the convolutional kernel  is rearranged as a sparse Toeplitz circulant

matrix, called the convolution matrix:

the input  is �attened row by row, from top to bottom:

Then,

which we can reshape to a  matrix to obtain .

u

U =

⎝
⎜
⎜
⎛1
0
0
0

4
1
0
0

1
4
0
0

0
1
0
0

1
0
1
0

4
1
4
1

3
4
1
4

0
3
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1

3
0
1
0

3
3
4
1

1
3
3
4

0
1
0
3

0
0
3
0

0
0
3
3

0
0
1
3

0
0
0
1⎠
⎟
⎟
⎞

x

v(x) = (4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8)
T

Uv(x) = (122 148 126 134)T

2 × 2 x ⊛ u
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The same procedure generalizes to  and convolutional kernel 

, such that:

the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix 

 of shape  where

each row  identi�es an element of the output feature map,

each column  identi�es an element of the input feature map,

the value  corresponds to the kernel value the element  is multiplied with in output ;

the input  is �attened into a column vector  of shape ;

the output feature map  is obtained by reshaping the 

 column vector  as a 

 matrix.

Therefore, a convolutional layer is a special case of a fully connected layer:

x ∈ RH×W

u ∈ Rh×w

U (H − h+ 1)(W − w + 1) ×HW

i

j

Ui,j j i

x v(x) HW × 1

x ⊛ u
(H − h+ 1)(W − w + 1) × 1 Uv(x)
(H − h+ 1) × (W − w + 1)

h = x ⊛ u⇔ v(h) = Uv(x) ⇔ v(h) =W v(x)T
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Fully connected vs convolutional layers.

―
Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 24 / 56

https://udlbook.github.io/udlbook/


Pooling
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When the input volume is large, pooling layers can be used to reduce the input

dimension while preserving its global structure, in a way similar to a down-

scaling operation.

26 / 56



Pooling
Consider a pooling area of size  and a 3d input tensor .

Max-pooling produces a tensor  such that

Average pooling produces a tensor  such that

Pooling is very similar in its formulation to convolution.

h× w x ∈ RC×(rh)×(sw)

o ∈ RC×r×s

o = x .c,j,i
n<h,m<w
max c,rj+n,si+m

o ∈ RC×r×s

o = x .c,j,i
hw

1

n=0

∑
h−1

m=0

∑
w−1

c,rj+n,si+m
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―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 28 / 56

https://fleuret.org/ee559/


Invariance

Formally, a function  is invariant to  if .

Pooling layers provide invariance to any permutation inside one cell, which

results in (pseudo-)invariance to local translations.

f g f (g(x)) = f (x)

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 29 / 56

https://fleuret.org/ee559/


Convolutional networks
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A convolutional network is generically de�ned as a composition of

convolutional layers ( ), pooling layers ( ), linear recti�ers ( ) and

fully connected layers ( ).

CONV POOL ReLU

FC
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The most common convolutional network architecture follows the pattern:

where:

 indicates repetition;

 indicates an optional pooling layer;

 (and usually ), ,  (and usually );

the last fully connected layer holds the output (e.g., the class scores).

INPUT→ [[CONV→ ReLU]*N → POOL?]*M → [FC→ ReLU]*K → FC

*

POOL?

N ≥ 0 N ≤ 3 M ≥ 0 K ≥ 0 K < 3
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Some common architectures for convolutional networks following this pattern

include:

, which implements a linear classi�er ( ).

, which implements a -layer MLP.

.

.

.

INPUT→ FC N = M = K = 0

INPUT→ [FC→ ReLU]∗K → FC K

INPUT→ CONV→ ReLU→ FC

INPUT→ [CONV→ ReLU→ POOL]*2→ FC→ ReLU→ FC

INPUT→ [[CONV→ ReLU]*2→ POOL]*3→ [FC→ ReLU]*2→ FC
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(demo)
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Architectures (some)

―
Credits: Bianco et al, 2018. 36 / 56

https://arxiv.org/abs/1810.00736


LeNet-5 (LeCun et al, 1998)

Composition of two  layers, followed by a block of fully-connected

layers.

CONV + POOL

―
Credits: Dive Into Deep Learning, 2020. 37 / 56

https://d2l.ai/


LeNet-1 (LeCun et al, 1993)

Bekijken op

Convolutional Network Demo from 1989Convolutional Network Demo from 1989
Later bekijLater bekij…… DelenDelen
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https://www.youtube.com/watch?v=FwFduRA_L6Q&embeds_referring_euri=http%3A%2F%2F0.0.0.0%3A8002%2F%3Fp%3Dlecture5.md
https://www.youtube.com/watch?v=FwFduRA_L6Q


AlexNet (Krizhevsky et al, 2012)

Composition of a 8-layer convolutional neural

network with a 3-layer MLP.

The original implementation was made of

two parts such that it could �t within two

GPUs.

LeNet vs. AlexNet

―
Credits: Dive Into Deep Learning, 2020. 39 / 56

https://d2l.ai/


VGG (Simonyan and

Zisserman, 2014)

Composition of 5 VGG blocks

consisting of 

layers, followed by a block of

fully connected layers.

The network depth increased

up to 19 layers, while the

kernel sizes reduced to 3.

AlexNet vs. VGG

CONV + POOL

―
Credits: Dive Into Deep Learning, 2020. 40 / 56

https://d2l.ai/


The effective receptive �eld is the part of the visual input that affects a given

unit indirectly through previous convolutional layers.

It grows linearly with depth when chaining convolutional layers.

It grows exponentially with depth when pooling layers (or strided

convolutions) are interleaved with convolutional layers.
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―
Credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 42 / 56

https://udlbook.github.io/udlbook/


ResNet (He et al, 2015)

Composition of convolutional and pooling layers organized in

a stack of residual blocks. Extensions consider more residual

blocks, up to a total of 152 layers (ResNet-152).

Regular ResNet block vs. ResNet block with  convolution.1 × 1

―
Credits: Dive Into Deep Learning, 2020. 43 / 56

https://d2l.ai/


Training networks of this depth is made possible because of the skip

connections  in the residual blocks. They allow the gradients to

shortcut the layers and pass through without vanishing.

h = x + f (x)

―
Credits: Dive Into Deep Learning, 2020. 44 / 56

https://d2l.ai/
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The bene�ts of depth
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... and width and resolution (Tan and Le, 2019)

―
Credits: Tan and Le, 2019. 47 / 56

https://arxiv.org/abs/1905.11946.pdf


Under the hood
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Understanding what is happening in deep neural networks after training is

complex and the tools we have are limited.

In the case of convolutional neural networks, we can look at:

the network's kernels as images

internal activations on a single sample as images

distributions of activations on a population of samples

derivatives of the response with respect to the input

maximum-response synthetic samples

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 49 / 56

https://fleuret.org/ee559/


Looking at �lters

LeNet's �rst convolutional layer, all �lters.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 50 / 56

https://fleuret.org/ee559/


LeNet's second convolutional layer, �rst 32 �lters.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 51 / 56

https://fleuret.org/ee559/


AlexNet's �rst convolutional layer, �rst 20 �lters.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 52 / 56

https://fleuret.org/ee559/


Maximum response samples
Convolutional networks can be inspected by looking for synthetic input images 

 that maximize the activation  of a chosen convolutional kernel  at

layer  and index  in the layer �lter bank.

These samples can be found by gradient ascent on the input space:

Here,  represents the L2 norm of the activation ,  is the initial

random input,  is the updated input at iteration , and  is the learning

rate.

x h (x)ℓ,d u
ℓ d

L (x)ℓ,d

x0
xt+1

= ∣∣h (x)∣∣ℓ,d 2

∼ U [0, 1]C×H×W

= x + γ∇ L (x )t x ℓ,d t

L (x)ℓ,d h (x)ℓ,d x0
xt+1 t + 1 γ
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VGG-16, convolutional layer 1-1, a few of the 64 �lters

―
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 / 56

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 2-1, a few of the 128 �lters

―
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 / 56

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 3-1, a few of the 256 �lters

―
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 / 56

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 4-1, a few of the 512 �lters

―
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 / 56

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 5-1, a few of the 512 �lters

―
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 54 / 56

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


The network appears to learn a hierarchical composition of patterns:

The �rst layers seem to encode basic features such as direction and color.

These basic features are then combined to form more complex textures,

such as grids and spots.

Finally, these textures are further combined to create increasingly intricate

patterns.
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Biological plausibility

"Deep hierarchical neural networks are beginning to transform neuroscientists’

ability to produce quantitatively accurate computational models of the sensory

systems, especially in higher cortical areas where neural response properties had

previously been enigmatic."

―

Credits: Yamins et al, Using goal-driven deep learning models to understand sensory cortex, 2016.
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The end.
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