Deep Learning

Lecture 4: Training neural networks

Prof. Gilles Louppe
g.louppe@uliege.be

w LIEGE
université 1/61

mailto:g.louppe@uliege.be

Today

How to optimize parameters efficiently?

e Optimizers
e |nitialization

e Normalization

2/61

Optimizers

3/61

Empirical risk minimization

09 = arg main L(0) =

A practical recommendation

Training a massive deep neural network is long, complex and sometimes
confusing.

A first step towards understanding, debugging and optimizing neural networks
Is to make use of visualization tools for

e plotting losses and metrics,
 visualizing computational graphs,

e or showing additional data as the network is being trained.

5/61

Sweep: shape_sweep B Results of Hyperparameter Sweep 5 =

Q .-
v @
@ Mame (150 visual valdulljs =

& B lucky-sweey 0881

@ @ northern-se 09304
® @ atomicyee 09795
® @ drawn-ower 09792

® @ proud-swee 08784

@& @ visionary-: DSTEL

® @ scadetowe: D976
Parameter impartance with respect to val-fullfaccuracy ~

® @ wnlwweep 09755 -

& Search {5} Paametees. 5P Rowiperpage 10+ Libolls >
® @ scaletswe. DOTSE t
Config pars=aie trparisnce 0 &
@& B super-swee 09754 n_pamn -
& @ moming-sa 09754 budget -
® @ pimeswes 09752 parameler_budget =
[|
® @ freshosweep 0.9752 Runtima
L]
@ @ rose-sweep 09751 o
batch_size L
& @ rose-sweep 09748
activationvalue relu L]

Weights & Biases (wandb.ai)

6/61

https://wandb.ai/

Let me say this once again: plot your losses.

Gradient descent

To minimize £(0), standard batch gradient descent (GD) consists in applying
the update rule

N
1
gt = N Z VHE(yna f(xn; Ht))
n=1
0r1 = 0; — Y9,

where 7y is the learning rate.

6, =-1.19,y=0.50

8/61

» 0:00/0:15

Stochastic gradient descent

While it makes sense to compute the gradient exactly,

e it takes time to compute and becomes inefficient for large N,

e itis an empirical estimation of an hidden quantity (the expected risk), and
any partial sum is also an unbiased estimate, although of greater variance.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 10/61

https://fleuret.org/ee559/

To reduce the computational complexity, stochastic gradient descent (SGD)
consists in updating the parameters after every sample

9t = Vol(Yn)> [(Xnw); 0¢))
Or1 = 0 — Y9

11/61

While being computationally faster than batch gradient descent,

e gradient estimates used by SGD can be very noisy, which may help escape
from local minima;

e but SGD does not benefit from the speed-up of batch-processing.

13/61

Mini-batching

Instead, mini-batch SGD consists in visiting the samples in mini-batches and
updating the parameters each time

B
1
gt = B ; Vez(yn(t,b)a f(xn(t,b) ;6:))
Ori1 = 0: — 79t

where the order n(t, b) to visit the samples can be either sequential or random.

 Increasing the batch size B reduces the variance of the gradient estimates
and enables the speed-up of batch processing.

e Theinterplay between B and « is still unclear.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 14/61

https://fleuret.org/ee559/

Limitations

The gradient descent method makes strong assumptions about

« the magnitude of the local curvature to set the step size,

« the isotropy of the curvature, so that the same step size v makes sense in
all directions.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 15/61

https://fleuret.org/ee559/

3- rd -
@® minimum \
/f— GD

-1 -

» 0:00/0:15

16/61

3 _—
@ minimum
— GD

= 0- ./

» 0:00/0:15

17761

3 _—
@ minimum
— GD

» 0:00/0:15

18/61

3 _—
@ minimum
— GD

» 0:00/0:15

19/61

Wolfe conditions could be used to design line search algorithms to

automatically determine a step size 7y, hence ensuring convergence towards a
local minima.

However, in deep learning,

« these algorithms are impractical because of the size of the parameter
space and the overhead it would induce,

e they might lead to overfitting when the empirical risk is minimized too well.

20/61

The tradeoffs of large-scale learning

A fundamental result due to Bottou and Bousquet (2011) states that stochastic
optimization algorithms (e.g., SGD) yield the best generalization performance (in
terms of excess error) despite being the worst optimization algorithms for
minimizing the empirical risk.

That is, for a fixed computational budget, stochastic optimization algorithms
reach a lower test error than more sophisticated algorithms (2nd order
methods, line search algorithms, etc) that would fit the training error too well or
would consume too large a part of the computational budget at every step.

21 /61

0.30 {\ : o
0 \ B - == sqgd
3 098 '\ '-__ —-= batch size=100
'\ ‘-“ ------ batch size=10
0.26 1\ v
0.24 - —~ e N
10-2 10~ 10° 10°

time (sec)

Credits: ,2020.

https://d2l.ai/

Momentum

1.000 {

500 |

In the situation of small but consistent gradients, as through valley floors,
gradient descent moves very slowly.

23/61

» 0:00/0:46 L D) o :

Image credits: Kosta Derpanis, Deep Learning in Computer Vision, 2018 24/61

https://www.cs.ryerson.ca/~kosta/CP8309-F2018/index.html

An improvement to gradient descent is to use momentum to add inertia in the
choice of the step direction, that is

U = U1 — YOt

0r1 = 0 + uy.

e The new variable u; is the velocity. It
corresponds to the direction and speed by
which the parameters move as the learning
dynamics progresses, modeled as an Qut1
exponentially decaying moving average of
negative gradients.

Ut

- Y&
e Gradient descent with momentum has three t

nice properties:
o tcan go through local barriers,
o it accelerates if the gradient does not change much,

o it dampens oscillations in narrow valleys.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 25/61

https://fleuret.org/ee559/

The hyper-parameter ax controls how recent gradients affect the current update.

e Usually, a = 0.9, with a > .
« |f at each update we observed g, the step would (eventually) be

~
| s

U= — g.

e Therefore, for a = 0.9, it is like multiplying the maximum speed by 10
relative to the current direction.

26/61

Nesterov momentum

An alternative consists in simulating a step in the direction of the velocity, then
calculate the gradient and make a correction.

N
1
gt = N E VHE(y'rw f(Xn;Ht + aut—l))
n=1

U = QU1 — VGt
01 = 0 + uy

- Y8t

aut-a

ut

28/61

-
2
(i
i
i
=

|

» 0:00/0:15

29/61

Adaptive learning rate

Vanilla gradient descent assumes the isotropy of the curvature, so that the
same step size -y applies to all parameters.

RN -
// @® minimum L @& minimum _
4-, \ 4-

|sotropic vs. Anistropic

30/61

AdaGrad

Per-parameter downscale by square-root of sum of squares of all its historical
values.

Tt =Ti-1 1+ Gt © Gy

Or1 = 0 — (5—+:y—\/r_t ®© gt.

» AdaGrad eliminates the need to manually tune the learning rate. Most
implementation use v = 0.01 as default.
e |tis good when the objective is convex.

e 7, grows unboundedly during training, which may cause the step size to
shrink and eventually become infinitesimally small.

31/61

RMSProp

Same as AdaGrad but accumulate an exponentially decaying average of the
gradient.

re =pri1 + (1 —p)g © g

Ory1 = 0 — %\/ﬁ ®© gt.

e Perform better in non-convex settings.

e Does not grow unboundedly.

32/61

Adam

Similar to RMSProp with momentum, but with bias correction terms for the first
and second moments.

st =p1Se-1+ (1 — p1)g

A St

14

re = pari—1 + (1 — p2)9: © g

- Tt

T
9t+1—9t—’76+8t 7,

e Good defaults are p1 = 0.9 and p2 = 0.999.

e Adam is one of the default optimizers in deep learning, along with SGD with
momentum.

33/61

® r'r'linir1"|U"""//'f}f
- |— AdaGrad

—— BMSProp
o /

> 0:00/0:15

34/61

Weight decay

e Weight decay is a regularization technique that penalizes large weights.

e Forvanilla SGD, it is equivalent to adding a penalty term to the loss function
A
lo + =107
o+ 5116l

e For more complex optimizers, it is equivalent to adding a penalty term to
the update rule

Ori1 =0 — v (g + A9).

35/61

1072 5

1073 5

1074 5
] — train_loss
1 ——- val_loss
10_51 T T T T
0 2 4 6 8 10

epoch

102 .

—— train_loss
——- val _loss

-

~~~
-
b
—

epoch

Training without (left) and with (right) weight decay.

Credits: Dive Into Deep Learning, 2023.


https://d2l.ai/

Learning rate

Lucas Beyer
@giffmana
It can't be repeated enough: learning-rate is the single most bang-for-
buck thing you can tune.

If you think you know *ze best” learning-rate, it just means you only train
standard stuff!

This is not a "secret trick" either; it's stated very clearly in THE deep-
learning book:

LI wrwel II.L-I.-J.IIE I.'I._E:I.HJI.J. IIh'r III.'|.J'\I.EII\ IIIF} Lae erﬁ]ll- llr\.ﬂ"\- LAFTIIITII L. R WL AL WYL LS,

The learning rate is perhaps the most important hyperparameter. If vou
have time to tune only one hyperparameter, tune the learning rate. It con-

hyperparameters—the effective capacity of the model is highest when the learning

37761



Scheduling

Despite per-parameter adaptive learning rate methods, it is usually helpful to
anneal the learning rate v over time.

« Step decay: reduce the learning rate by some factor every few epochs (e.g,
by half every 10 epochs).

« Exponential decay: v; = vy exp(—kt) where vy and k are hyper-
parameters.

e 1/t decay: v = v /(1 + kt) where v and k are hyper-parameters.

38/61



ResNet-18 - “:."W»---f--*"v\~-m-ﬂm-u.u.ﬂ_m.\;m¢
——ResNet-34 _ 34-layer
20{} 10 20 30 40 50
iter. (led)

Step decay scheduling for training ResNets.

39/61



Warmup and cyclical schedules

1.00 A

0.75

0.50

0.25

0.00

T T T T T
0 200 400 600 800 1000

1.00

0.75

0.50

0.25

0.00

T T T T T
0 200 400 600 800 1000



Initialization

41/61



In convex problems, provided a good learning rate =y, convergence is guaranteed
regardless of the initial parameter values.

In the non-convex regime, initialization is much more important! Little is known
on the mathematics of initialization strategies of neural networks.

o What is known: initialization should break symmetry.

e What is known: the scale of weights is important.

42/61



(demo)

43/61


https://www.deeplearning.ai/ai-notes/initialization/

Controlling for the variance in the forward pass

A first strategy is to initialize the network parameters such that activations
preserve the same variance across layers.

Intuitively, this ensures that the information keeps flowing during the forward

pass, without reducing or magnifying the magnitude of input signals
exponentially.

44 /61



Let us assume that

e we arein alinear regime at initialization (e.g., the positive part of a RelLU or
the middle of a sigmoid),

. are initialized i.i.d,

e weights w,fj

 biases b; are initialized to be 0,

« input features are i.i.d, with a variance denoted as V|z|.

Then, the variance of the activation Al of uniti in layer [ is

q-1—1
| 11-1
> whih!
j=0
q-1—1

= > VIwy] VA

j=0

V[n] =V

where q; is the width of layer [ and h? =zjforallj=0,...,p— 1

45/61



Since the weights wf;j at layer [ share the same variance V [wl} and the
variance of the activations in the previous layer are the same, we can drop the
indices and write

VI[h'] = g1V [w'] V[p].
Therefore, the variance of the activations is preserved across layers when
1
V[w'] = V.
di—1

This condition is enforced in LeCun's uniform initialization, which is defined as

B 3 3
91—17 q1—1 '

l

46/61



Controlling for the variance in the backward pass

A similar idea can be applied to ensure that the gradients flow in the backward
pass (without vanishing nor exploding), by maintaining the variance of the
gradient with respect to the activations fixed across layers.

Under the same assumptions as before,

dy
V <
E:

|=v

[q141—1

2

| j=0
[qi+1—1

2

dy 8h§+1
drlttl OR!
j 1

a9
dhl-+1 Jst
J

47 /61



If we further assume that

 the gradients of the activations at layer [ share the same variance

« the weights at layer [ + 1 share the same variance V [wl“},

then we can drop the indices and write

dy dy z
\Y [@] = ql_|_1V [dhl+1] Vv [w +1:| .

Therefore, the variance of the gradients with respect to the activations is
preserved across layers when

48/61



Xavier initialization

We have derived two different conditions on the variance of wl,
® V [wl:| f—

1
qi1-1
1
q -’

A compromise is the Xavier initialization, which initializes w

distribution with variance

randomly from a

1 2
1l _
N4 [w} O oqatq g1 _|_ql'
5 _

For example, normalized initialization is defined as

! | 6 6
Y Q-1+ qf qi—-1 1+ qi

49/61



15 I ! ! I ! T | I
i 5 - —Layer 1
: : —Layer 2
10r —Layer3| |
: ' —Layer 4
5k Layer 5| |

0 : ‘
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value

—
Lh
T

0.5

4.',_‘.'

0 - "~ i
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1
Activation value

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

Credits: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010.


http://proceedings.mlr.press/v9/glorot10a.html

100 I . : : . .
5 ' —Layer 1
—Layer 2
—Layer 3
S0 —Layer 4|
_Layer 5
0 | ; e R - |
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients
10 T T T T I T T T T—— T ——
| : 5 —Layer 1
,f"ﬂ' H‘ll = L Y
K : - ayer 2

j ‘ .I,nl | —Layer 3
5r ' J,N{’H | hﬁ” | —Layer 4| -
j ‘}'n \C\{ Layer 5
L hibye i Q

: RN ; . “ 5
0 " -Mt"‘l‘ 1 I i MH*‘"“,’ i
-025 -02 -0.15 -0.1 -005 0 0.05 0.1 0.15 0.2 0.25
Backpropagated gradients

Figure 7: Back-propagated gradients normalized his-

tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: (0-peak
decreases for higher layers.

Credits: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010.

51/61


http://proceedings.mlr.press/v9/glorot10a.html

He initialization

Because ReLU(z) = max(0, x), the mean of the activations at layer [ is
typically not 0. Therefore, our zero-mean assumption is wrong. Accounting for
this shift, He et al (2015) derive a forward initialization scheme that initializes w
from a distribution with variance

[

52/61



0.95

0.9

Error

0.85 1
—_— EﬁiVar[w,] =1 ours

= A Var[wy] =1 Xavier

0.75 T T :
0 0.5 1 1.5 2 2.5 3

Epoch

Figure 2. The convergence of a 22-layer large model (B in Ta-
ble 3). The x-axis is the number of training epochs. The y-axis is
the top-1 error of 3,000 random val samples, evaluated on the cen-
ter crop. We use ReLU as the activation for both cases. Both our
initialization (red) and “Xavier” (blue) [7] lead to convergence, but
ours starts reducing error earlier.



(Back to demo)

54/61



Normalization

55/61



Data normalization

Previous weight initialization strategies rely on preserving the activation
variance constant across layers, under the assumption that the input feature
variances are the same. That is,

V[z;] = V[z;] = V|[z]

for all pairs of features 7, 7.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 56/61


https://fleuret.org/ee559/

In general, this constraint is not satisfied but can be enforced by standardizing
the input data feature-wise,

1
X :(X—,LL)@T,
o)

A 1 A 2 1 ( A )2
H= = g X 0" = — E X — ).
xed xed
Data after standard scaling
Full data Zoom-in
5
120
0.2 9

100 1 4
>
0.14 5
2 80 3 &
Q o =3
2 2 =
E & 32
3 3 5
£ 60 £ 0.0 =
5] o c
s s a
£ £ 2
5 404 ] E
z = &
—-0.1 °
o

20
1
—0.2
0 e -
T T T T T T T T T T T
-2 0 2 4 6 -2 -1 0 1 2 3
Median Income Median Income

Credits: Scikit-Learn, Compare the effect of different scalers on data with outliers. 57 /61


https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#standardscaler

Batch normalization

Maintaining proper statistics of the activations and derivatives is critical for
training neural networks.

This constraint can be enforced explicitly during the forward pass by re-
normalizing them. Batch normalization was the first method introducing this
idea.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL; loffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 58/61


https://fleuret.org/ee559/
https://arxiv.org/abs/1502.03167

Let us consider a minibatch of samples at training, for which u; € RY,
b=1,..., B, are intermediate values computed at some location in the
computational graph.

In batch normalization following the node u, the per-component mean and
variance are first computed on the batch

1 & 1 &
fipaten = g w, Obateh = 3 g (up — fibaten)”,

from which the standardized ug € RY? are computed such that

. 1
uﬁ,zv@(ub—ubatch)@&bth+€+ﬁ

where v, B8 € R? are parameters to optimize.

During testing, the mean and variance computed on the entire training set and
used to standardize the activations.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

59/61


https://fleuret.org/ee559/

— — —lInception

- — BN-Baseline
©oor BN-x5

BN-x30

4+ -+ BN-x5-Sigmoid

Model Steps to 72.2%  Max accuracy
Inception 31.0-10° 72.2%
BN-Baseline 13.3-10° 72.7%
BN-x5 2.1-10° 73.0%
BN-x30 2.7-10° 74.8%
69.8%

BN-x5-Sigmoid

# Steps to match Inception
1 1 1

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs.

training steps.

1
10M

1
15M

20M 25M

30M

the number of

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-

work.

Credits: loffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015.

60/61


https://arxiv.org/abs/1502.03167

Layer normalization

Layer normalization is a variant of batch normalization that normalizes the
activations across the features of each sample, rather than across the samples
of each feature:

. 1
u’ =70 (1'1_,Uf1ayer)G> ~ +B
Olayer 1+ €

61/61



The end.

61/61



