
Deep Learning
Lecture 4: Training neural networks

Prof. Gilles Louppe

g.louppe@uliege.be

1 / 61

mailto:g.louppe@uliege.be

Today
How to optimize parameters e�ciently?

Optimizers

Initialization

Normalization

2 / 61

Optimizers

3 / 61

Empirical risk minimization

θ = arg L(θ) = ℓ(y , f (x ; θ)).∗
d

θ
min

N

1

n=1

∑
N

n n

4 / 61

A practical recommendation

Training a massive deep neural network is long, complex and sometimes

confusing.

A �rst step towards understanding, debugging and optimizing neural networks

is to make use of visualization tools for

plotting losses and metrics,

visualizing computational graphs,

or showing additional data as the network is being trained.

5 / 61

Weights & Biases (wandb.ai)

6 / 61

https://wandb.ai/

Let me say this once again: plot your losses.

7 / 61

Gradient descent
To minimize , standard batch gradient descent (GD) consists in applying

the update rule

where is the learning rate.

L(θ)

gt

θt+1

= ∇ ℓ(y , f (x ; θ))
N

1

n=1

∑
N

θ n n t

= θ − γg ,t t

γ

8 / 61

0:00 / 0:15

9 / 61

Stochastic gradient descent

While it makes sense to compute the gradient exactly,

it takes time to compute and becomes ine�cient for large ,

it is an empirical estimation of an hidden quantity (the expected risk), and

any partial sum is also an unbiased estimate, although of greater variance.

N

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 10 / 61

https://fleuret.org/ee559/

To reduce the computational complexity, stochastic gradient descent (SGD)

consists in updating the parameters after every sample

gt

θt+1

= ∇ ℓ(y , f (x ; θ))θ n(t) n(t) t

= θ − γg .t t

11 / 61

0:00 / 0:15

12 / 61

While being computationally faster than batch gradient descent,

gradient estimates used by SGD can be very noisy, which may help escape

from local minima;

but SGD does not bene�t from the speed-up of batch-processing.

13 / 61

Mini-batching

Instead, mini-batch SGD consists in visiting the samples in mini-batches and

updating the parameters each time

where the order to visit the samples can be either sequential or random.

Increasing the batch size reduces the variance of the gradient estimates

and enables the speed-up of batch processing.

The interplay between and is still unclear.

gt

θt+1

= ∇ ℓ(y , f (x ; θ))
B

1

b=1

∑
B

θ n(t,b) n(t,b) t

= θ − γg ,t t

n(t, b)

B

B γ

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 14 / 61

https://fleuret.org/ee559/

Limitations

Gradient descent makes strong assumptions about

the magnitude of the local curvature to set the step size,

the isotropy of the curvature, so that the same step size makes sense in

all directions.

γ

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 15 / 61

https://fleuret.org/ee559/

0:00 / 0:15

γ = 0.01
16 / 61

0:00 / 0:15

γ = 0.01
17 / 61

0:00 / 0:15

γ = 0.1
18 / 61

0:00 / 0:15

γ = 0.4
19 / 61

Wolfe conditions could be used to design line search algorithms to

automatically determine a step size , hence ensuring convergence towards a

local minima.

However, in deep learning,

these algorithms are impractical because of the size of the parameter

space and the overhead it would induce,

they might lead to over�tting when the empirical risk is minimized too well.

γt

20 / 61

The tradeoffs of large-scale learning

A fundamental result due to Bottou and Bousquet (2011) states that stochastic

optimization algorithms (e.g., SGD) yield the best generalization performance (in

terms of excess error) despite being the worst optimization algorithms for

minimizing the empirical risk.

That is, for a �xed computational budget, stochastic optimization algorithms

reach a lower test error than more sophisticated algorithms (2nd order

methods, line search algorithms, etc) that would �t the training error too well or

would consume too large a part of the computational budget at every step.

21 / 61

―
Credits: Dive Into Deep Learning, 2020. 22 / 61

https://d2l.ai/

Momentum

In the situation of small but consistent gradients, as through valley �oors,

gradient descent moves very slowly.

23 / 61

0:00 / 0:46

―
Image credits: Kosta Derpanis, Deep Learning in Computer Vision, 2018 24 / 61

https://www.cs.ryerson.ca/~kosta/CP8309-F2018/index.html

The new variable is the velocity. It

corresponds to the direction and speed by

which the parameters move as the learning

dynamics progresses, modeled as an

exponentially decaying moving average of

negative gradients.

Gradient descent with momentum has three

nice properties:

it can go through local barriers,

it accelerates if the gradient does not change much,

it dampens oscillations in narrow valleys.

αut−1
ut

−γgt

An improvement to gradient descent is to use momentum to add inertia in the

choice of the step direction, that is

ut

θt+1

= αu − γgt−1 t

= θ + u .t t

ut

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 25 / 61

https://fleuret.org/ee559/

The hyper-parameter controls how recent gradients affect the current update.

Usually, , with .

If at each update we observed , the step would (eventually) be

Therefore, for , it is like multiplying the maximum speed by

relative to the current direction.

α

α = 0.9 α > γ

g

u = − g.
1 − α

γ

α = 0.9 10

26 / 61

0:00 / 0:15

27 / 61

Nesterov momentum

An alternative consists in simulating a step in the direction of the velocity, then

calculate the gradient and make a correction.

αut−1

ut

−γgt

gt

ut

θt+1

= ∇ ℓ(y , f (x ; θ + αu))
N

1

n=1

∑
N

θ n n t t−1

= αu − γgt−1 t

= θ + ut t

28 / 61

0:00 / 0:15

29 / 61

Adaptive learning rate
Vanilla gradient descent assumes the isotropy of the curvature, so that the

same step size applies to all parameters.

Isotropic vs. Anistropic

γ

30 / 61

AdaGrad

Per-parameter downscale by square-root of sum of squares of all its historical

values.

AdaGrad eliminates the need to manually tune the learning rate. Most

implementation use as default.

It is good when the objective is convex.

 grows unboundedly during training, which may cause the step size to

shrink and eventually become in�nitesimally small.

rt

θt+1

= r + g ⊙ gt−1 t t

= θ − ⊙ g .t
δ + rt

γ
t

γ = 0.01

rt

31 / 61

RMSProp

Same as AdaGrad but accumulate an exponentially decaying average of the

gradient.

Perform better in non-convex settings.

Does not grow unboundedly.

rt

θt+1

= ρr + (1 − ρ)g ⊙ gt−1 t t

= θ − ⊙ g .t
δ + rt

γ
t

32 / 61

Adam

Similar to RMSProp with momentum, but with bias correction terms for the �rst

and second moments.

Good defaults are and .

Adam is one of the default optimizers in deep learning, along with SGD with

momentum.

st

ŝt

rt

r̂ t

θt+1

= ρ s + (1 − ρ)g1 t−1 1 t

=
1 − ρ1

t

st

= ρ r + (1 − ρ)g ⊙ g2 t−1 2 t t

=
1 − ρ2

t

rt

= θ − γt
δ + r̂ t

ŝt

ρ = 0.91 ρ = 0.9992

33 / 61

0:00 / 0:15

34 / 61

Weight decay

Weight decay is a regularization technique that penalizes large weights.

For vanilla SGD, it is equivalent to adding a penalty term to the loss function

For more complex optimizers, it is equivalent to adding a penalty term to

the update rule

ℓ + ∣∣θ∣∣ .θ 2
λ 2

θ = θ − γ g + λθ .t+1 t (t)

35 / 61

Training without (left) and with (right) weight decay.

―
Credits: Dive Into Deep Learning, 2023. 36 / 61

https://d2l.ai/

Learning rate

37 / 61

Scheduling

Despite per-parameter adaptive learning rate methods, it is usually helpful to

anneal the learning rate over time.

Step decay: reduce the learning rate by some factor every few epochs (e.g,

by half every 10 epochs).

Exponential decay: where and are hyper-

parameters.

 decay: where and are hyper-parameters.

γ

γ = γ exp(−kt)t 0 γ0 k

1/t γ = γ /(1 + kt)t 0 γ0 k

38 / 61

Step decay scheduling for training ResNets.

39 / 61

Warmup and cyclical schedules

40 / 61

Initialization

41 / 61

In convex problems, provided a good learning rate , convergence is guaranteed

regardless of the initial parameter values.

In the non-convex regime, initialization is much more important! Little is known

on the mathematics of initialization strategies of neural networks.

What is known: initialization should break symmetry.

What is known: the scale of weights is important.

γ

42 / 61

(demo)

43 / 61

https://www.deeplearning.ai/ai-notes/initialization/

Controlling for the variance in the forward pass

A �rst strategy is to initialize the network parameters such that activations

preserve the same variance across layers.

Intuitively, this ensures that the information keeps �owing during the forward

pass, without reducing or magnifying the magnitude of input signals

exponentially.

44 / 61

Let us assume that

we are in a linear regime at initialization (e.g., the positive part of a ReLU or

the middle of a sigmoid),

weights are initialized i.i.d,

biases are initialized to be ,

input features are i.i.d, with a variance denoted as .

Then, the variance of the activation of unit in layer is

where is the width of layer and for all .

wij
l

bl 0

V[x]

hi
l i l

V h[i
l] = V w h[

j=0

∑
q −1l−1

ij
l

j
l−1]

= V w V h
j=0

∑
q −1l−1

[ij
l] [j

l−1]

ql l h = xj
0

j j = 0, ..., p− 1

45 / 61

Since the weights at layer share the same variance and the

variance of the activations in the previous layer are the same, we can drop the

indices and write

Therefore, the variance of the activations is preserved across layers when

This condition is enforced in LeCun's uniform initialization, which is de�ned as

wij
l l V w[l]

V h = q V w V h .[l] l−1 [l] [l−1]

V w = ∀l.[l]
ql−1

1

w ∼ U − , .ij
l [

ql−1

3
ql−1

3
]

46 / 61

Controlling for the variance in the backward pass

A similar idea can be applied to ensure that the gradients �ow in the backward

pass (without vanishing nor exploding), by maintaining the variance of the

gradient with respect to the activations �xed across layers.

Under the same assumptions as before,

V[
dhi

l

dŷ
] = V[

j=0

∑
q −1l+1

dhj
l+1

dŷ
∂hi

l

∂hj
l+1

]

= V w[
j=0

∑
q −1l+1

dhj
l+1

dŷ
j,i
l+1]

= V V w
j=0

∑
q −1l+1

[
dhj

l+1

dŷ
] [ji

l+1]

47 / 61

If we further assume that

the gradients of the activations at layer share the same variance

the weights at layer share the same variance ,

then we can drop the indices and write

Therefore, the variance of the gradients with respect to the activations is

preserved across layers when

l

l + 1 V w[l+1]

V = q V V w .[
dhl

dŷ
] l+1 [

dhl+1

dŷ
] [l+1]

V w = ∀l.[l]
ql

1

48 / 61

Xavier initialization

We have derived two different conditions on the variance of ,

.

A compromise is the Xavier initialization, which initializes randomly from a

distribution with variance

For example, normalized initialization is de�ned as

wl

V w =[l]
ql−1

1

V w =[l]
ql

1

wl

V w = = .[l]
2

q +ql−1 l

1
q + ql−1 l

2

w ∼ U − , .ij
l [

q + ql−1 l

6
q + ql−1 l

6
]

49 / 61

―
Credits: Glorot and Bengio, Understanding the di�culty of training deep feedforward neural networks, 2010. 50 / 61

http://proceedings.mlr.press/v9/glorot10a.html

―
Credits: Glorot and Bengio, Understanding the di�culty of training deep feedforward neural networks, 2010. 51 / 61

http://proceedings.mlr.press/v9/glorot10a.html

He initialization

Because , the mean of the activations at layer is

typically not . Therefore, our zero-mean assumption is wrong. Accounting for

this shift, He et al (2015) derive a forward initialization scheme that initializes

from a distribution with variance

ReLU(x) = max(0, x) l

0
wl

V w = .[l]
ql−1

2

52 / 61

53 / 61

(Back to demo)

54 / 61

Normalization

55 / 61

Data normalization

Previous weight initialization strategies rely on preserving the activation

variance constant across layers, under the assumption that the input feature

variances are the same. That is,

for all pairs of features .

V x = V x ≜ V x[i] [j] []

i, j

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 56 / 61

https://fleuret.org/ee559/

In general, this constraint is not satis�ed but can be enforced by standardizing

the input data feature-wise,

where

x = (x −) ⊙ ,′ μ̂
σ̂

1

= x = (x −) .μ̂
N

1

x∈d

∑ σ̂2
N

1

x∈d

∑ μ̂ 2

―
Credits: Scikit-Learn, Compare the effect of different scalers on data with outliers. 57 / 61

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#standardscaler

Batch normalization

Maintaining proper statistics of the activations and derivatives is critical for

training neural networks.

This constraint can be enforced explicitly during the forward pass by re-

normalizing them. Batch normalization was the �rst method introducing this

idea.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL; Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 58 / 61

https://fleuret.org/ee559/
https://arxiv.org/abs/1502.03167

Let us consider a minibatch of samples at training, for which ,

, are intermediate values computed at some location in the

computational graph.

In batch normalization following the node , the per-component mean and

variance are �rst computed on the batch

from which the standardized are computed such that

where are parameters to optimize.

During testing, the mean and variance computed on the entire training set and

used to standardize the activations.

u ∈ Rb
q

b = 1, ...,B

u

= u = (u −) ,μ̂batch
B

1

b=1

∑
B

b σ̂batch
2

B

1

b=1

∑
B

b μ̂batch
2

u ∈ Rb
′ q

ub
′ = γ ⊙ (u −) ⊙ + βb μ̂batch + ϵσ̂batch

1

γ, β ∈ Rq

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 59 / 61

https://fleuret.org/ee559/

―
Credits: Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 60 / 61

https://arxiv.org/abs/1502.03167

Layer normalization

Layer normalization is a variant of batch normalization that normalizes the

activations across the features of each sample, rather than across the samples

of each feature:

u = γ ⊙ (u−) ⊙ + β.′ μ̂layer + ϵσ̂layer

1

61 / 61

The end.

61 / 61

