
Deep Learning
Lecture 3: Automatic differentiation

Prof. Gilles Louppe

g.louppe@uliege.be

1 / 44

mailto:g.louppe@uliege.be

Today
Calculus

Automatic differentiation

Implementation

Beyond neural networks

2 / 44

Roger Grosse

Implementing backpropagation by hand is like programming in assembly language.

You will probably never do it, but it is important for having a mental model of how

everything works.

3 / 44

Motivation

Gradient-based training algorithms are the workhorse of deep learning.

Deriving gradients by hand is tedious and error prone. This becomes

quickly impractical for complex models.

Changes to the model require rederiving the gradient.

―
Image credits: Visualizing optimization trajectory of neural nets, Logan Yang, 2020. 4 / 44

https://towardsdatascience.com/from-animation-to-intuition-visualizing-optimization-trajectory-in-neural-nets-726e43a08d85

Programs as differentiable functions

A program is de�ned as a composition of primitive operations that we know

how to differentiate individually.

import jax.numpy as jnp

from jax import grad

def predict(params, inputs):

 for W, b in params:

 outputs = jnp.dot(inputs, W) + b

 inputs = jnp.tanh(outputs)

 return outputs

def loss_fun(params, inputs, targets):

 preds = predict(params, inputs)

 return jnp.mean((preds - targets)**2)

grad_fun = grad(loss_fun)

5 / 44

Modern frameworks support higher-order derivatives.

def tanh(x):

 y = jnp.exp(-2.0 * x)

 return (1.0 - y) / (1.0 + y)

fp = grad(tanh)

fpp = grad(grad(tanh)) # what sorcery is this?!

...

6 / 44

Automatic differentiation

Automatic differentiation (AD) provides a family of techniques for evaluating the

derivatives of a function speci�ed by a computer program.

 symbolic differentiation, which aims at identifying some human-readable

expression of the derivative.

 numerical differentation (�nite differences), which may introduce round-

off errors.

≠

≠

7 / 44

Calculus

8 / 44

Derivative
Let .

The derivative of is

where

 is the Lagrange notation,

 is the Leibniz notation.

f : R→ R

f

f (x) = (x) ≜ ,′

∂x
∂f

h→0
lim

h

f (x+ h) − f (x)

f (x)′

(x)∂x
∂f

9 / 44

The derivative of represents its instantaneous rate of change at .∂x
∂f(x)

f x

10 / 44

Gradient
The gradient of is

i.e., a vector that gathers the partial derivatives of .

Applying the de�nition of the derivative coordinate-wise, we have

where is the -th basis vector.

f : R → Rn

∇f (x) ≜ ∈ R ,

⎣
⎢
⎢
⎢
⎢
⎡ (x)∂x1
∂f

⋮

(x)∂xn

∂f ⎦
⎥
⎥
⎥
⎥
⎤

n

f

∇f (x) = (x) = ,[]j ∂xj

∂f
h→0
lim

h

f (x + he) − f (x)j

ej j

11 / 44

Jacobian
The Jacobian of is

The gradient's transpose is thus a wide Jacobian ().

f : R → Rn m

J (x) = (x)f ∂x
∂f ≜ ∈ R

⎣
⎢
⎢
⎢
⎢
⎡ (x)∂x1
∂f1

⋮

(x)∂x1
∂fm

…

…

(x)∂xn
∂f1

⋮

(x)∂xn
∂fm ⎦

⎥
⎥
⎥
⎥
⎤

m×n

= [(x)∂x1
∂f … (x)∂xn

∂f]

=

⎣
⎢
⎢
⎢
⎢
⎡∇f (x)1

T

⋮

∇f (x)m
T⎦
⎥
⎥
⎥
⎥
⎤

m = 1

12 / 44

Automatic differentiation

13 / 44

Chain composition

...

Let us assume a function that decomposes as a chain

composition

for functions , for .

f : R → Rn m

f = f ∘ f ∘… ∘ f ,t t−1 1

f : R → Rk
nk−1 nk k = 1,…, t

14 / 44

By the chain rule,

∂x0
∂xt =

∂xt−1

∂xt

recursive case

∂x0
∂xt−1

= …
∂xt−1

∂xt

∂xt−2

∂xt−1

∂x1
∂x2

∂x0
∂x1

15 / 44

Forward accumulation

Reverse accumulation

= … …
∂x0
∂xt

∂xt−1

∂xt (
∂xt−2

∂xt−1 ((
∂x1
∂x2

∂x0
∂x1)))

= … …
∂x0
∂xt (((

∂xt−1

∂xt

∂xt−2

∂xt−1))
∂x1
∂x2)

∂x0
∂x1

16 / 44

Complexity

The time complexity of the forward and reverse accumulations are

(Prove it!)

If (which is typical in deep learning), then backward accumulation

is cheaper. And vice-versa.

O n n n and O n n n .(0

k=1

∑
t−1

k k+1) (t

k=0

∑
t−2

k k+1)

n ≪ nt 0

17 / 44

Multi-layer perceptron
Chain compositions can be generalized to feedforward neural networks of the

form

for , and where are vectors of parameters and is

given. In supervised learning, usually corresponds to a scalar loss , hence

.

...

...

x = f (x , θ)k k k−1 k

k = 1,…, t θk x ∈ R0
n0

f t ℓ
n = 1t

18 / 44

(whiteboard example)

19 / 44

AD on computer programs
Let denote a generic function where

 are the input variables,

 is implemented by a computer program producing

intermediate variables ,

 is the total number of variables, with denoting the output variable,

, for .

The goal is to compute the Jacobians , for .

f(x ,… ,x)1 s

x ,… ,x1 s

f (x ,… ,x)1 s

(x ,… ,x)s+1 t

t xt

x ∈ Rk
nk k = 1,…, t

∈ R∂xk

∂f n ×nt k k = 1,…, s

20 / 44

Computer programs as computational graphs

A numerical algorithm is a succession of instructions of the form

where is a function which only depends on the previous variables.

∀k = s+ 1,…, t, x = f (x ,… ,x)k k 1 k−1

fk

21 / 44

... ...

Temporary
variablesInputs Output

This computation can be represented by a directed acyclic graph where

the nodes are the variables ,

an edge connects to if is an argument of .

The evaluation of thus corresponds to a forward traversal

of this graph.

xk

xi xk xi fk

x = f(x ,… ,x)t 1 s

22 / 44

Forward mode
The forward mode of automatic differentiation consists in computing

for all variables , iteratively from to .

Initialization

Set the Jacobians of the input nodes with

∈ R
∂x1
∂xk n ×nk 1

xk k = s+ 1 k = t

∂x1
∂x1

∂x1
∂x2

…

∂x1

∂xs

= 1n ×n1 1

= 0n ×n2 1

= 0n ×ns 1

23 / 44

where

 denotes the on-the-�y

computation of the Jacobian

locally associated to the primitive

,

 is obtained from the previous

iterations (in topological order).

...

Forward recursive update

For all ,k = s+ 1,…, t

= × ,
∂x1
∂xk

l∈parents(k)

∑ [
∂xl

∂xk]
∂x1
∂xl

[∂xl

∂xk]

fk

∂x1
∂xl

24 / 44

(whiteboard example)

25 / 44

Forward mode automatic differentiation needs to be repeated for

. For a large , this is prohibitive.

However, the cost in terms of memory is limited since temporary variables

can be freed as soon as their child nodes have all been computed.

k = 1,…, s s

26 / 44

Backward mode
Instead of evaluating the Jacobians for , the

reverse mode of automatic differentation consists in computing

recursively from down to .

Initialization

Set the Jacobian of the output node to

∈ R∂x1
∂xk n ×nk 1 k = s+ 1,…, t

∈ R
∂xk

∂xt n ×nt k

k = t k = 1

= 1 .
∂xt

∂xt
n ×nt t

27 / 44

where

 is obtained from previous

iterations (in reverse topological

order) and is known as the

adjoint,

 denotes the on-the-�y

computation of the Jacobian

locally associated to the primitive

.

...

Backward recursive update

For all ,k = t − 1,…, 1

= ×
∂xk

∂xt

m∈children(k)

∑
∂xm

∂xt [
∂xk

∂xm]

∂xm

∂xt

[∂xk

∂xm]

fm

28 / 44

(whiteboard example)

29 / 44

The advantage of backward mode automatic differentiation is that a single

traversal of the graph allows to compute all .

However, the cost in terms of memory is signi�cant since all the temporary

variables computed during the forward pass must be kept in memory.

∂xk

∂xt

30 / 44

Implementations

31 / 44

32 / 44

Primitives

Most automatically-differentiable frameworks are de�ned by a collection of

composable primitive operations.

33 / 44

Composing primitives

Primitive functions are composed together into a graph that describes the

computation. The computational graph is either built

ahead of time, from the abstract syntax tree of the program or using a

dedicated API (e.g., Tensor�ow 1), or

just in time, by tracing the program execution (e.g., Tensor�ow Eager, JAX,

PyTorch).

34 / 44

VJPs

In the backward recursive update, in the situation above, we have when

Therefore, each primitive only needs to de�ne its vector-Jacobian product

(VJP). The Jacobian is never explicitly built. It is usually simpler,

faster, and more memory e�cient to compute the VJP directly.

Most reverse mode AD systems compose VJPs backward to compute .

x ∈ Rt

=
∂xk

∂xt

1×nm

∂xm

∂xt

n ×nm k

[
∂xk

∂xm]

[∂xk

∂xm]

∂x1
∂xt

35 / 44

JVPs

Similarly, when , the forward recursive update

is usually implemented in terms of Jacobian-vector products (JVP) locally

de�ned at each primitive.

n = 11

=
∂x1
∂xk

n ×nk l

[
∂xl

∂xk]

n ×1l

∂x1
∂xl

36 / 44

Checkpointing

Checkpointing consists in marking intermediate variables for which the forward

values are not stored in memory. These are recomputed during the backward

pass, which can save memory at the cost of recomputation.

class MLP(nn.Module):

 def __init__(self):

 super().__init__()

 self.layer1 = nn.Linear(100, 200)

 self.relu = nn.ReLU()

 self.layer2 = nn.Linear(200, 10)

 def forward(self, x):

 x = checkpoint(self.layer1, x) # x is not stored

 # it will be recomputed

 # during the backward pass

 x = self.relu(x)

 x = self.layer2(x)

 return x

37 / 44

Higher-order derivatives

def tanh(x):

 y = jnp.exp(-2.0 * x)

 return (1.0 - y) / (1.0 + y)

fp = grad(tanh)

fpp = grad(grad(tanh)) # what sorcery is this?!

...

The backward pass is itself a composition of primitives. Its execution can

be traced, and reverse mode AD can run on its computational graph!

38 / 44

(demo)

39 / 44

AD beyond neural networks

40 / 44

You Should Be Using Automatic DifferentiatYou Should Be Using Automatic Differentiat……
Later bekijLater bekij…… DelenDelen

You should be using automatic differentiation (Ryan Adams, 2016)

41 / 44

https://www.youtube.com/watch?v=sq2gPzlrM0g

gradsim - under reviewgradsim - under review
Later bekijLater bekij…… DelenDelen

Differentiable simulation for system identi�cation and visuomotor control

(Murthy Jatavallabhula et al, 2021)

42 / 44

https://www.youtube.com/watch?v=YuVdk1b0TVw

Optimizing a wing (Sam Greydanus, 2020)

[Run in browser]

43 / 44

https://bit.ly/2H5r401

Summary
Automatic differentiation is one of the keys that enabled the deep learning

revolution.

Backward mode automatic differentiation is more e�cient when the

function has more inputs than outputs.

Applications of AD go beyond deep learning.

44 / 44

The end.

44 / 44

References
Slides from this lecture have been largely adapted from:

Mathieu Blondel, Automatic differentiation, 2020.

Gabriel Peyré, Course notes on Optimization for Machine Learning, 2020.

44 / 44

https://mblondel.org/teaching/autodiff-2020.pdf
https://mathematical-tours.github.io/book-sources/optim-ml/OptimML.pdf

