Deep Learning

Lecture 3: Automatic differentiation

Prof. Gilles Louppe
g.louppe@uliege.be

w LIEGE
université 1/44

mailto:g.louppe@uliege.be

Today

Calculus

Automatic differentiation

Implementation

Beyond neural networks

2/44

Implementing backpropagation by hand is like programming in assembly language.
You will probably never do it, but it is important for having a mental model of how
everything works.

Roger Grosse

3/44

LOSS: MLP w/ 5 hidden, 20 neurons each, adam

principal component 1, 17.0%

-10 =5 0 5 10 15 20 25
principal component 0, 74.6%

Motivation

» Gradient-based training algorithms are the workhorse of deep learning.

» Deriving gradients by hand is tedious and error prone. This becomes
quickly impractical for complex models.

e Changes to the model require rederiving the gradient.

Image credits: Visualizing optimization trajectory of neural nets, Logan Yang, 2020. 4/44

https://towardsdatascience.com/from-animation-to-intuition-visualizing-optimization-trajectory-in-neural-nets-726e43a08d85

Programs as differentiable functions

A program is defined as a composition of primitive operations that we know

how to differentiate individually.

import Jjax.numpy as jnp

from jax import grad

def predict (params, inputs):
for W, b in params:
outputs = Jnp.dot (inputs, W)
inputs = Jjnp.tanh (outputs)

return outputs

def loss_fun (params, 1inputs, targets):

preds = predict (params, inputs)

return Jjnp.mean ((preds — targets) **2)

grad_fun = grad(loss_fun)

5/44

Modern frameworks support higher-order derivatives.

def tanh (x):
y = Jnp.exp (2.0 * x)
return (1.0 — vy) / (1.0 + vy)

fprp = grad(tanh)
fpp = grad(grad(tanh)) # what sorcery is this?!

6/44

Automatic differentiation

Automatic differentiation (AD) provides a family of techniques for evaluating the
derivatives of a function specified by a computer program.

« == symbolic differentiation, which aims at identifying some human-readable
expression of the derivative.

« # numerical differentation (finite differences), which may introduce round-
off errors.

/44

Calculus

8/44

Derivative

Let f: R — R.

The derivative of fis

(o) = X (@) 2 iy L2 W) = 1(2)

h—0 h

where

e f'(z)is the Lagrange notation,

. g—w(x) is the Leibniz notation.

9/44

fio
¢

=> Aim éf = ﬁt
A=o H I

The derivative a]é_(;) of f represents its instantaneous rate of change at x.

10/ 44

Gradient

The gradientof f : R™ — Ris

Vfx) £ : c R",

(%)

- an

i.e., a vector that gathers the partial derivatives of f.

Applying the definition of the derivative coordinate-wise, we have

_of f(x+ hej) — f(x)

V()] = 5, () = lim :

where e; is the j-th basis vector.

11/ 44

Jacobian

The Jacobianof f : R — R™ is

'%(x) g:fi(x)'
Ti(x) = £ (%) 2
S(x) .. G (x))
:[aﬁ—;(x) aifn(x)]
(Vfi(x)"
|V fm(x)"]

The gradient's transpose is thus a wide Jacobian (m = 1).

EE IR&TﬂJK?l

12/ 44

Automatic differentiation

Chain composition

(xo) £

208

f2

It

_,@

Let us assume a function f : R” — R™ that decomposes as a chain

composition

for functions f, : R™1 — R™ fork =1,...,t.

f:ftoft_lo...ofl,

14/ 44

By the chain rule,

é?)(t é?)(t é))(t__l

8X0 8Xt_1 3X0

recursive case

ox: 0xi_1 0x9 0x%1

Oxi_1 Ox4—a Ox1 0%

15/ 44

Forward accumulation
ox, _ 0%, (3Xt1 ((%%)))
aXO N thfl 8th2 o 8}(1 8}(0 o
Reverse accumulation

oxy Ox: Ox 1 0x2 \ 0%
8x0 N o 5xt_1 8Xt_2 o 8X1 8){0

16/ 44

Complexity

The time complexity of the forward and reverse accumulations are

t—1 t—2
@) (TL() Z nknkH) and O (nt Z nknkH))
k=1

k=0

(Prove it!)

If n; < ny (which is typical in deep learning), then backward accumulation
is cheaper. And vice-versa.

17/ 44

Multi-layer perceptron

Chain compositions can be generalized to feedforward neural networks of the
form

Xk — fk(Xk—laek)

fork = 1,...,t and where 6 are vectors of parameters and xo € R™ is
given. In supervised learning, f; usually corresponds to a scalar loss £, hence
ny = 1.

f

0
¥ ak i

(whiteboard example)

19/44

AD on computer programs

Let f(x1,...,xs) denote a generic function where
e X1,...,X, aretheinput variables,
o f(xq,...,%x4)isimplemented by a computer program producing
intermediate variables (x4,1,...,X;),

e tisthe total number of variables, with x; denoting the output variable,

e X, € R™, fork=1,...,t

The goal is to compute the Jacobians 36—; e R"*™ fork =1,...,s.

20/44

Computer programs as computational graphs

A numerical algorithm is a succession of instructions of the form
Vk:S—Fl,...,t, Xk.:fk(xl,...,xk_l)

where f is a function which only depends on the previous variables.

21/ 44

Temporary
variables

Inputs Output

This computation can be represented by a directed acyclic graph where

e the nodes are the variables x;,

« an edge connects x; to x if x; is an argument of f.

The evaluation of x; = f(xq, ..., x,) thus corresponds to a forward traversal
of this graph.

Forward mode

The forward mode of automatic differentiation consists in computing

00Xy,

c R’I’Lk XNy
8X1

for all variables xy, iteratively fromk = s+ 1to k = t.

Initialization

Set the Jacobians of the input nodes with

5’x1

—]-n XN
8)(1 1 1

8X2
% — Onz Xn1
0x,

— On Xn
8X1 s 1

23/44

Forward recursive update

Forallk =s+1,...,1t,

oxy OX}. 0x;
oy~ 2 [axl] X oy

l€parents(k)
where
. [%] denotes the on-the-fly o
X1 ,,
computation of the Jacobian ‘ B
locally associated to the primitive ol
f1.
. g% is obtained from the previous

iterations (in topological order). parents(k)

(whiteboard example)

25/44

Forward mode automatic differentiation needs to be repeated for
k=1,...,s Foralarge s, this is prohibitive.

However, the cost in terms of memory is limited since temporary variables
can be freed as soon as their child nodes have all been computed.

26/44

Backward mode

Instead of evaluating the Jacobians g—i’f e R™*™ fork =s+1,...,t the
reverse mode of automatic differentation consists in computing

axt E Rntxnk

00Xy,

recursively from k = t downto k = 1.

Initialization

Set the Jacobian of the output node to

8Xt

— =1, «n -
8Xt ne XMt

27 /44

Backward recursive update

Forallk=t—1,...,1,
8Xt
0x;, o Z
méchildren(k)

where

. g;‘t Is obtained from previous
iterations (in reverse topological
order) and is known as the

adjoint,

8Xk

. [&‘—m} denotes the on-the-fly

computation of the Jacobian
locally associated to the primitive
f,,.

8Xt

0x,,

|

O0Xp,

8Xk

|

children(k)

(whiteboard example)

29/44

The advantage of backward mode automatic differentiation is that a single
traversal of the graph allows to compute all %.

However, the cost in terms of memory is significant since all the temporary
variables computed during the forward pass must be kept in memory.

30/44

Implementations

31/44

O PyTorch

1 TensorFlow

Primitives

Most automatically-differentiable frameworks are defined by a collection of
composable primitive operations.

Docs » Public API: jax package » jax.lax package ©) Edit on GitHub

jax.lax package

jax.1lax is a library of primitives operations that underpins libraries such as jax.numpy .
Transformation rules, such as JVP and batching rules, are typically defined as transformations on
jax.lax primitives.

Many of the primitives are thin wrappers around equivalent XLA operations, described by the XLA
operation semantics documentation. In a few cases JAX diverges from XLA, usually to ensure that
the set of operations is closed under the operation of JVP and transpose rules.

Where possible, prefer to use libraries such as jax.numpy instead of using jax.1ax directly. The
jax.mmpy AP follows MumPy, and is therefore more stable and less likely to change than the

jax.1ax APl

Operators
abs (X) Elementwise absolute value: |x|.
add (%, Y) Elementwise addition: x + .
acos (x) Elementwise arc cosine: acos(x).
argmax {operand, axis, index_dtype) Computes the index of the maximum elem
argmin {operand, axis, index_dtype) Computes the index of the minimum elem
asin (x) Elementwise arc sine: asin(x).
atan (x) Elementwise arc tangent: atan(x).
atanz (%, V) Elementwise arc tangent of two variables:

batch_matmul (Ihs. rhs[, precision]) Batch matrix multiplication.

Composing primitives

Primitive functions are composed together into a graph that describes the
computation. The computational graph is either built

« ahead of time, from the abstract syntax tree of the program or using a
dedicated API (e.g., Tensorflow 1), or

e justintime, by tracing the program execution (e.g., Tensorflow Eager, JAX,
PyTorch).

34/44

('J?xt

Bxk

In the backward recursive update, in the situation above, we have when x; € R

Ox; 0x, laxm]

8—xk a 8Xm 8Xk
M~ N——

I1xXnm n,, xng

VJPs

« Therefore, each primitive only needs to define its vector-Jacobian product
(VJP). The Jacobian [%"Tﬂ is never explicitly built. It is usually simpler,

faster, and more memory efficient to compute the VJP directly.

 Most reverse mode AD systems compose VJPs backward to compute 3 ‘9Xt

JVPs

Similarly, when n; = 1, the forward recursive update

0x;y, [axk] 0x;

8—)(1: 8Xl 8X1
——"

Nk XNy nl><1

is usually implemented in terms of Jacobian-vector products (JVP) locally
defined at each primitive.

36/44

Checkpointing

Checkpointing consists in marking intermediate variables for which the forward
values are not stored in memory. These are recomputed during the backward
pass, which can save memory at the cost of recomputation.

class MLP (nn.Module) :
def init (self):
super () .__init__ ()
self.layerl = nn.Linear (100, 200)
self.relu = nn.RelLU()
self.layer?2 = nn.Linear (200, 10)

def forward(self, x):
x = checkpoint (self.layerl, x) # x i1s not stored
it will be recomputed
during the backward pass
x = self.relu(x)
x = self.layer2 (x)

return x

37 /44

Higher-order derivatives

def tanh (x) :
y = Jnp.exp(—2.0 * x)
return (1.0 — vy) / (1.0 + vy)

fp = grad(tanh)
fpp = grad(grad(tanh)) # what sorcery is this?!

The backward pass is itself a composition of primitives. Its execution can
be traced, and reverse mode AD can run on its computational graph!

38/44

(demo)

39/44

AD beyond neural networks

You Should Be Using Automatic Differentiat... G ~»

Later bekij... Delen

You should be using automatic differentiation (Ryan Adams, 2016)

41/ 44

https://www.youtube.com/watch?v=sq2gPzlrM0g

@ gradsim - under review o ~

After optimization Ground-truth

Differentiable simulation for system identification and visuomotor control
(Murthy Jatavallabhula et al, 2021)

42 /44

https://www.youtube.com/watch?v=YuVdk1b0TVw

Initial setup During optimization Final result

Optimizing a wing (Sam Greydanus, 2020)

[Run in browser]

https://bit.ly/2H5r401

Summary

e Automatic differentiation is one of the keys that enabled the deep learning
revolution.

e Backward mode automatic differentiation is more efficient when the
function has more inputs than outputs.

e Applications of AD go beyond deep learning.

44/ 44

The end.

44/ 44

References

Slides from this lecture have been largely adapted from:

e Mathieu Blondel, Automatic differentiation, 2020.

o Gabriel Peyré, Course notes on Optimization for Machine Learning, 2020.

44 /44

https://mblondel.org/teaching/autodiff-2020.pdf
https://mathematical-tours.github.io/book-sources/optim-ml/OptimML.pdf

