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Today
Explain and motivate the basic constructs of neural networks.

From linear discriminant analysis to logistic regression

Stochastic gradient descent

From logistic regression to the multi-layer perceptron

Vanishing gradients and recti�ed networks

Universal approximation theorem
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Neural networks
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Perceptron
The Mark I Perceptron (Rosenblatt, 1960) is one of the earliest instances of a

neural network.

―
Credits: Frank Rosenblatt, Mark I Perceptron operators' manual, 1960. 4 / 55

https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf


The Mark I Percetron was implemented in hardware.
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Perceptron Research from the 50's & 60's, clPerceptron Research from the 50's & 60's, cl……
Later bekijLater bekij…… DelenDelen

The machine could classify simple images.
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https://www.youtube.com/watch?v=cNxadbrN_aI


The Mark I Perceptron is composed of association and response units (or

"perceptrons"), each acting as a binary classi�er that computes a linear

combination of its inputs and applies a step function to the result.

In the modern sense, given an input , each unit computes its output asx ∈ Rp

f (x) = {
1
0
if  w x + b ≥ 0∑i i i

otherwise
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The classi�cation rule can be rewritten as

where  is the non-linear activation function

f (x) = sign( w x + b)
i

∑ i i

sign(x)

sign(x) = {
1
0
if x ≥ 0
otherwise
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add sign

The computation of

can be represented as a

computational graph where

white nodes correspond to

inputs and outputs;

red nodes correspond to

model parameters;

blue nodes correspond to

intermediate operations.

Computational graphs

f (x) = sign( w x + b)
i

∑ i i
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In terms of tensor operations,  can be rewritten as

for which the corresponding computational graph of  is:

dot add sign

f

f (x) = sign(w x + b),T

f
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Linear discriminant analysis
Consider training data , with

,

.

Assume class populations are Gaussian, with same covariance matrix 

(homoscedasticity):

(x, y) ∼ pX ,Y

x ∈ Rp

y ∈ {0, 1}

Σ

p(x∣y) = exp − (x − μ ) Σ (x − μ )
(2π) ∣Σ∣p

1
(

2
1

y
T −1

y )
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Using the Bayes' rule, we have:

p(y = 1∣x) =
p(x)

p(x∣y = 1)p(y = 1)

=
p(x∣y = 0)p(y = 0) + p(x∣y = 1)p(y = 1)

p(x∣y = 1)p(y = 1)

= .
1 +

p(x∣y=1)p(y=1)
p(x∣y=0)p(y=0)

1
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Using the Bayes' rule, we have:

It follows that with

we get

p(y = 1∣x) =
p(x)

p(x∣y = 1)p(y = 1)

=
p(x∣y = 0)p(y = 0) + p(x∣y = 1)p(y = 1)

p(x∣y = 1)p(y = 1)

= .
1 +

p(x∣y=1)p(y=1)
p(x∣y=0)p(y=0)

1

σ(x) = ,
1 + exp(−x)

1

p(y = 1∣x) = σ log + log .(
p(x∣y = 0)
p(x∣y = 1)

p(y = 0)
p(y = 1)

)
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Therefore,

p(y = 1∣x)

= σ log +

⎝
⎜
⎜
⎛

p(x∣y = 0)
p(x∣y = 1)

a

log
p(y = 0)
p(y = 1)

⎠
⎟
⎟
⎞

= σ log p(x∣y = 1) − log p(x∣y = 0) + a( )

= σ − (x − μ ) Σ (x − μ ) + (x − μ ) Σ (x − μ ) + a(
2
1

1
T −1

1 2
1

0
T −1

0 )

= σ x +
⎝
⎜
⎛

wT

(μ − μ ) Σ1 0
T −1

b

(μ Σ μ − μ Σ μ ) + a
2
1

0
T −1

0 1
T −1

1

⎠
⎟
⎞

= σ w x + b( T )
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Note that the sigmoid function

looks like a soft heavyside:

Therefore, the overall model  is very similar to the

perceptron.

σ(x) =
1 + exp(−x)

1

f (x;w, b) = σ(w x + b)T
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dot add

This unit is the main primitive of all neural networks!
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Logistic regression
Same model

as for linear discriminant analysis.

But,

ignore model assumptions (Gaussian class populations,

homoscedasticity);

instead, �nd  that maximizes the likelihood of the data.

p(y = 1∣x) = σ w x + b( T )

w, b
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We have,

This loss is an instance of the cross-entropy

for  and .

arg p(d∣w, b)
w,b
max

= arg p(y = y ∣x ,w, b)
w,b
max

x ,y ∈di i

∏ i i

= arg σ(w x + b) (1 − σ(w x + b))
w,b
max

x ,y ∈di i

∏ T
i

yi T
i

1−yi

= arg
w,b
min

L(w,b)= ℓ(y , (x ;w,b))∑
i i ŷ i

−y log σ(w x + b) − (1 − y ) log(1 − σ(w x + b))
x ,y ∈di i

∑ i
T

i i
T

i

H(p, q) = E [− log q]p

p = pY ∣xi
q = p ∣xŶ i
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Multi-layer perceptron
So far we considered the logistic unit , where , ,

 and .

These units can be composed in parallel to form a layer with  outputs:

where , , ,  and where  is upgraded to the

element-wise sigmoid function.

matmul add

h = σ w x + b( T ) h ∈ R x ∈ Rp

w ∈ Rp b ∈ R

q

h = σ(W x + b)T

h ∈ Rq x ∈ Rp W ∈ Rp×q b ∈ Rq σ(⋅)
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Similarly, layers can be composed in series, such that:

where  denotes the model parameters .

This model is the multi-layer perceptron, also known as the fully connected

feedforward network.

h0
h1
...

hL

f (x; θ) = ŷ

= x

= σ(W h + b )1
T

0 1

= σ(W h + b )L
T

L−1 L

= hL

θ {W ,b , ...∣k = 1, ...,L}k k
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Output layers

For binary classi�cation, the width  of the last layer  is set to  and the

activation function is the sigmoid , which results in a

single output  that models the probability .

For multi-class classi�cation, the sigmoid activation  in the last layer can

be generalized to produce a vector  of probability estimates 

. This activation is the  function, where its -th output is

de�ned as

for .

For regression, the width  of the last layer  is set to the dimensionality of

the output  and the activation function is the identity , which

results in a vector .

q L 1
σ(⋅) = 1+exp(−⋅)

1

h ∈ [0, 1]L p(y = 1∣x)

σ

h ∈ △L
C

p(y = i∣x) Softmax i

Softmax(z) = ,i
exp(z )∑j=1

C
j

exp(z )i

i = 1, ...,C

q L

dout σ(⋅) = ⋅
h ∈ RL

dout
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(demo)
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Expressiveness

Let us consider the 1-hidden layer MLP

This model can approximate any smooth 1D function to arbitrary precision,

provided enough hidden units.

f (x) = w sign(x+ b ).∑ i i
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Universal approximation theorem. (Cybenko 1989; Hornik et al, 1991) Let 

be a bounded, non-constant continuous function. Let  denote the -

dimensional hypercube, and  denote the space of continuous functions

on . Given any  and , there exists  and 

 such that

satis�es

It guarantees that even a single hidden-layer network can represent any

classi�cation problem in which the boundary is locally linear (smooth);

It does not inform about good/bad architectures, nor how they relate to the

optimization procedure.

The universal approximation theorem generalizes to any non-polynomial

(possibly unbounded) activation function, including the ReLU (Leshno,

1993).

σ(⋅)
Ip p

C(I )p
Ip f ∈ C(I )p ϵ > 0 q > 0

v ,w , b , i = 1, ..., qi i i

F (x) = v σ(w x+ b )
i≤q

∑ i i
T

i

∣f (x) − F (x)∣ < ϵ.
x∈Ip
sup

25 / 55



Training
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Loss functions
The parameters (e.g.,  and  for each layer ) of an MLP  are

learned by minimizing a loss function  over a dataset  of

input-output pairs.

The loss function is derived from the likelihood:

For classi�cation, assuming a categorical likelihood, the loss is the cross-

entropy .

For regression, assuming a Gaussian likelihood, the loss is the mean

squared error .

Wk bk k f (x; θ)
L(θ) d = {(x ,y )}j j

L(θ) = − y log f (x ; θ)
N
1 ∑(x ,y )∈dj j

∑i=1
C

ji i j

L(θ) = (y − f (x ; θ))
N
1 ∑(x ,y )∈dj j

j j
2

27 / 55



Gradient descent
To minimize , gradient descent uses local linear information to iteratively

move towards a (local) minimum.

For , a �rst-order approximation around  can be de�ned as

L(θ)

θ ∈ R0
d θ0

(ϵ; θ ) = L(θ ) + ϵ ∇ L(θ ) + ∣∣ϵ∣∣ .L̂ 0 0
T

θ 0 2γ
1 2
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A minimizer of the approximation  is given for

which results in the best improvement for the step .

Therefore, model parameters can be updated iteratively using the update rule

where

 are the initial parameters of the model;

 is the learning rate;

both are critical for the convergence of the update rule.

(ϵ; θ )L̂ 0

∇ (ϵ; θ )ϵL̂ 0 = 0

= ∇ L(θ ) + ϵ,θ 0
γ

1

ϵ = −γ∇ L(θ )θ 0

θ = θ − γ∇ L(θ ),t+1 t θ t

θ0

γ
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Example 1: Convergence to a local minima
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Example 1: Convergence to a local minima
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Example 2: Convergence to the global minima
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Example 2: Convergence to the global minima
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Example 3: Divergence due to a too large learning rate
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Example 3: Divergence due to a too large learning rate
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Stochastic gradient descent

In the empirical risk minimization setup,  and its gradient decompose as

Therefore, in batch gradient descent the complexity of an update grows linearly

with the size  of the dataset. This is bad!

L(θ)

L(θ)

∇L(θ)

= ℓ(y , f (x ; θ))
N

1

x ,y ∈di i

∑ i i

= ∇ℓ(y , f (x ; θ)).
N

1

x ,y ∈di i

∑ i i

N
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Since the empirical risk is already an approximation of the expected risk, it

should not be necessary to carry out the minimization with great accuracy.
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Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process  depends on the examples 

picked randomly at each iteration.

θ = θ − γ∇ℓ(y , f (x ; θ ))t+1 t i(t+1) i(t+1) t

N

{θ ∣t = 1, ...}t i(t)
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Batch gradient descent Stochastic gradient descent

Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process  depends on the examples 

picked randomly at each iteration.

θ = θ − γ∇ℓ(y , f (x ; θ ))t+1 t i(t+1) i(t+1) t

N

{θ ∣t = 1, ...}t i(t)
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Why is stochastic gradient descent still a good idea?

Informally, averaging the update

over all choices  restores batch gradient descent.

Formally, if the gradient estimate is unbiased, that is, if

then the formal convergence of SGD can be proved, under appropriate

assumptions.

If training is limited to a single pass over the data, then SGD directly

minimizes the expected risk.

θ = θ − γ∇ℓ(y , f (x ; θ ))t+1 t i(t+1) i(t+1) t

i(t + 1)

E [∇ℓ(y , f (x ; θ ))]i(t+1) i(t+1) i(t+1) t = ∇ℓ(y , f (x ; θ ))
N

1

x ,y ∈di i

∑ i i t

= ∇L(θ )t
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The excess error characterizes the expected risk discrepancy between the

Bayes model and the approximate empirical risk minimizer. It can be

decomposed as

where

 is the approximation error due to the choice of an hypothesis space,

 is the estimation error due to the empirical risk minimization principle,

 is the optimization error due to the approximate optimization

algorithm.

E R( ) − R(f )[ f
~
∗
d

B ]

= E R(f ) − R(f ) + E R(f ) − R(f ) + E R( ) − R(f )[ ∗ B ] [ ∗
d

∗ ] [ f
~
∗
d

∗
d ]

= E + E + Eapp est opt

Eapp

E est

Eopt

38 / 55



A fundamental result due to Bottou and Bousquet (2011) states that stochastic

optimization algorithms (e.g., SGD) yield strong generalization performance (in

terms of excess error) despite being poor optimization algorithms for

minimizing the empirical risk.
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Automatic differentiation (teaser)
To minimize  with stochastic gradient descent, we need the gradient

i.e., a vector that gathers the partial derivatives of the loss for each model

parameter  for .

These derivatives can be evaluated automatically from the computational graph

of  using automatic differentiation.

L(θ)

∇ℓ(θ) =

⎣
⎢
⎢
⎢
⎢
⎡ (θ)∂θ0

∂ℓ

⋮

(θ)∂θK−1
∂ℓ ⎦

⎥
⎥
⎥
⎥
⎤

θk k = 0,…,K − 1

ℓ
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Backpropagation

In Leibniz notations, the chain rule states that

Since a neural network is a composition of differentiable functions, the total

derivatives of the loss can be evaluated backward, by applying the chain

rule recursively over its computational graph.

The implementation of this procedure is called reverse automatic

differentiation (or backpropagation in the context of neural networks).

∂θi

∂ℓ
=

k∈parents(ℓ)

∑
∂uk

∂ℓ

recursive case

∂θi

∂uk
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Let us consider a simpli�ed 1-hidden layer MLP and the following loss function:

for , ,  and .

f (x;W ,W )1 2

ℓ(y, ;W ,W )ŷ 1 2

= σ W σ W x( 2
T ( 1

T ))

= cross_ent(y, ) + λ ∣∣W ∣∣ + ∣∣W ∣∣ŷ ( 1 2 2 2)

x ∈ Rp y ∈ R W ∈ R1
p×q W ∈ R2

q
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In the forward pass, intermediate values are all computed from inputs to

outputs, which results in the annotated computational graph below:
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The partial derivatives can be computed through a backward pass, by walking

through all paths from outputs to parameters in the computational graph and

accumulating the terms. For example, for  we have:∂W1

∂ℓ

∂W1

∂ℓ

∂W1

∂u8

= +
∂u8

∂ℓ
∂W1

∂u8
∂u4

∂ℓ
∂W1

∂u4

= ...
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Let us zoom in on the computation of the network output  and of its derivative

with respect to .

Forward pass: values , ,  and  are computed by traversing the

graph from inputs to outputs given ,  and .

Backward pass: by the chain rule we have

Note how evaluating the partial derivatives requires the intermediate values

computed forward.

ŷ

W1

u1 u2 u3 ŷ

x W1 W2

∂W1

∂ ŷ
=
∂u3

∂ ŷ
∂u2

∂u3
∂u1

∂u2
∂W1

∂u1

=
∂u3

∂σ(u )3
∂u2

∂W u2
T

2

∂u1

∂σ(u )1
∂W1

∂W x1T
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Vanishing gradients
Training deep MLPs with many layers has for long (pre-2011) been very di�cult

due to the vanishing gradient problem.

Small gradients slow down, and eventually block, stochastic gradient

descent.

This results in a limited capacity of learning.

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).

Gradients for layers far from the output vanish to zero.
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Let us consider a simpli�ed 2-hidden layer MLP, with , such

that

Under the hood, this would be evaluated as

and its derivative  as

x,w ,w ,w ∈ R1 2 3

f (x;w ,w ,w ) = σ w σ w σ w x .1 2 3 ( 3 ( 2 ( 1 )))

u1

u2

u3

u4

u5

ŷ

= w x1

= σ(u )1
= w u2 2

= σ(u )3
= w u3 4

= σ(u )5

∂w1
∂ ŷ

∂w1

∂ ŷ
=
∂u5

∂ ŷ
∂u4

∂u5
∂u3

∂u4
∂u2

∂u3
∂u1

∂u2
∂w1

∂u1

= w w x
∂u5

∂σ(u )5
3 ∂u3

∂σ(u )3
2 ∂u1

∂σ(u )1
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The derivative of the sigmoid activation function  is:

Notice that  for all .

σ

(x) = σ(x)(1 − σ(x))
∂x
∂σ

0 ≤ (x) ≤∂x
∂σ

4
1 x
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Assume that weights  are initialized randomly from a Gaussian with

zero-mean and small variance, such that with high probability .

Then,

This implies that the derivative  exponentially shrinks to zero as the number

of layers in the network increases.

Hence the vanishing gradient problem.

In general, bounded activation functions (sigmoid, tanh, etc) are prone to

the vanishing gradient problem.

Note the importance of a proper initialization scheme.

w ,w ,w1 2 3

−1 ≤ w ≤ 1i

= x
∂w1

∂ ŷ

≤ 4
1

∂u5

∂σ(u )5

≤1

w3

≤ 4
1

∂u3

∂σ(u )3

≤1

w2

≤ 4
1

∂u1

σ(u )1

∂w1
∂ ŷ
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Activation functions
Instead of the sigmoid activation function, modern neural networks use the

recti�ed linear unit (ReLU) activation function, de�ned as

ReLU(x) = max(0, x)
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Note that the derivative of the ReLU function is

For , the derivative is unde�ned. In practice, it is set to zero.

ReLU(x) =
∂x
∂

{
0
1
if x ≤ 0
otherwise

x = 0

51 / 55



Therefore,

This solves the vanishing gradient problem, even for deep networks! (provided

proper initialization)

Note that:

The ReLU unit dies when its input is negative, which might block gradient

descent.

This is actually a useful property to induce sparsity.

This issue can also be solved using leaky ReLUs, de�ned as

for a small  (e.g., ).

= w w x
∂w1

∂ ŷ

=1

∂u5

∂σ(u )5
3

=1

∂u3

∂σ(u )3
2

=1

∂u1

∂σ(u )1

LeakyReLU(x) = max(αx, x)

α ∈ R+ α = 0.1
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Beyond preventing vanishing gradients, the choice of the activation function 

is critical for the expressiveness of the network.

0.0

σ

―
Credits: Simon J.D. Prince, 2023. 53 / 55

https://udlbook.github.io/udlbook/


(demo)
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Yann LeCun, 2018.

People are now building a new kind of software by assembling networks of

parameterized functional blocks and by training them from examples using

some form of gradient-based optimization.
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The end.
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