
Deep Learning
Lecture 2: Multi-layer perceptron

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 64

mailto:g.louppe@uliege.be

Today
Explain and motivate the basic constructs of neural networks.

From linear discriminant analysis to logistic regression

Stochastic gradient descent

From logistic regression to the multi-layer perceptron

Vanishing gradients and recti�ed networks

Universal approximation theorem

2 / 64

Neural networks

3 / 64

The Threshold Logic Unit (McCulloch and
Pitts, 1943) was the �rst mathematical model
for a neuron.

Assuming Boolean inputs and outputs, it is
de�ned as

This unit can implement:

Therefore, any Boolean function can be built
with such units.

Threshold Logic Unit

f (x) = 1 w x +b≥0∑
i i i

or(a, b) = 1a+b−0.5≥0

and(a, b) = 1a+b−1.5≥0

not(a) = 1−a+0.5≥0

―
Credits: McCulloch and Pitts, A logical calculus of ideas immanent in nervous activity, 1943. 4 / 64

http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf

Perceptron
The perceptron (Rosenblatt, 1957) is very similar, except that the inputs are real:

This model was originally motivated by biology, with being synaptic weights
and and �ring rates.

f (x) = {
1
0
if w x + b ≥ 0∑i i i

otherwise

wi

xi f

―
Credits: Frank Rosenblatt, Mark I Perceptron operators' manual, 1960. 5 / 64

https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

The Mark I Percetron (Frank Rosenblatt).

6 / 64

Perceptron Research from the 50's & 60's, clPerceptron Research from the 50's & 60's, cl……
Later bekijLater bekij…… DelenDelen

The Perceptron

7 / 64

https://www.youtube.com/watch?v=cNxadbrN_aI

Let us de�ne the (non-linear) activation function:

The perceptron classi�cation rule can be rewritten as

sign(x) = {
1
0
if x ≥ 0
otherwise

f (x) = sign(w x + b).
i

∑ i i

8 / 64

add sign

The computation of

can be represented as a
computational graph where

white nodes correspond to
inputs and outputs;

red nodes correspond to
model parameters;

blue nodes correspond to
intermediate operations.

Computational graphs

f (x) = sign(w x + b)
i

∑ i i

9 / 64

In terms of tensor operations, can be rewritten as

for which the corresponding computational graph of is:

dot add sign

f

f (x) = sign(w x + b),T

f

10 / 64

Linear discriminant analysis
Consider training data , with

,

.

Assume class populations are Gaussian, with same covariance matrix
(homoscedasticity):

(x, y) ∼ pX ,Y

x ∈ Rp

y ∈ {0, 1}

Σ

p(x∣y) = exp − (x − μ) Σ (x − μ)
(2π) ∣Σ∣p

1
(

2
1

y
T −1

y)

11 / 64

Using the Bayes' rule, we have:

p(y = 1∣x) =
p(x)

p(x∣y = 1)p(y = 1)

=
p(x∣y = 0)p(y = 0) + p(x∣y = 1)p(y = 1)

p(x∣y = 1)p(y = 1)

= .
1 +

p(x∣y=1)p(y=1)
p(x∣y=0)p(y=0)

1

12 / 64

Using the Bayes' rule, we have:

It follows that with

we get

p(y = 1∣x) =
p(x)

p(x∣y = 1)p(y = 1)

=
p(x∣y = 0)p(y = 0) + p(x∣y = 1)p(y = 1)

p(x∣y = 1)p(y = 1)

= .
1 +

p(x∣y=1)p(y=1)
p(x∣y=0)p(y=0)

1

σ(x) = ,
1 + exp(−x)

1

p(y = 1∣x) = σ log + log .(
p(x∣y = 0)
p(x∣y = 1)

p(y = 0)
p(y = 1)

)

12 / 64

Therefore,

p(y = 1∣x)

= σ log +

⎝
⎜
⎜
⎛

p(x∣y = 0)
p(x∣y = 1)

a

log
p(y = 0)
p(y = 1)

⎠
⎟
⎟
⎞

= σ log p(x∣y = 1) − log p(x∣y = 0) + a()

= σ − (x − μ) Σ (x − μ) + (x − μ) Σ (x − μ) + a(
2
1

1
T −1

1 2
1

0
T −1

0)

= σ x +
⎝
⎜
⎛

wT

(μ − μ) Σ1 0
T −1

b

(μ Σ μ − μ Σ μ) + a
2
1

0
T −1

0 1
T −1

1

⎠
⎟
⎞

= σ w x + b(T)

13 / 64

14 / 64

14 / 64

14 / 64

Note that the sigmoid function

looks like a soft heavyside:

Therefore, the overall model is very similar to the
perceptron.

σ(x) =
1 + exp(−x)

1

f (x;w, b) = σ(w x + b)T

15 / 64

dot add

This unit is the main primitive of all neural networks!

16 / 64

Logistic regression
Same model

as for linear discriminant analysis.

But,

ignore model assumptions (Gaussian class populations,
homoscedasticity);

instead, �nd that maximizes the likelihood of the data.

p(y = 1∣x) = σ w x + b(T)

w, b

17 / 64

We have,

This loss is an instance of the cross-entropy

for and .

arg p(d∣w, b)
w,b
max

= arg p(y = y ∣x ,w, b)
w,b
max

x ,y ∈di i

∏ i i

= arg σ(w x + b) (1 − σ(w x + b))
w,b
max

x ,y ∈di i

∏ T
i

yi T
i

1−yi

= arg
w,b
min

L(w,b)= ℓ(y , (x ;w,b))∑
i i ŷ i

−y log σ(w x + b) − (1 − y) log(1 − σ(w x + b))
x ,y ∈di i

∑ i
T

i i
T

i

H(p, q) = E [− log q]p

p = pY ∣xi
q = p ∣xŶ i

18 / 64

When takes values in , a similar derivation yields the logistic lossY {−1, 1}

L(w, b) = − log σ y (w x + b)) .
x ,y ∈di i

∑ (i
T

i)

19 / 64

Multi-layer perceptron
So far we considered the logistic unit , where , ,

 and .

These units can be composed in parallel to form a layer with outputs:

where , , , and where is upgraded to the
element-wise sigmoid function.

matmul add

h = σ w x + b(T) h ∈ R x ∈ Rp

w ∈ Rp b ∈ R

q

h = σ(W x + b)T

h ∈ Rq x ∈ Rp W ∈ Rp×q b ∈ Rq σ(⋅)

20 / 64

Similarly, layers can be composed in series, such that:

where denotes the model parameters .

This model is the multi-layer perceptron, also known as the fully connected
feedforward network.

h0
h1
...

hL

f (x; θ) = ŷ

= x

= σ(W h + b)1
T

0 1

= σ(W h + b)L
T

L−1 L

= hL

θ {W ,b , ...∣k = 1, ...,L}k k

21 / 64

matmul add matmul add matmul add...

22 / 64

Output layer

For binary classi�cation, the width of the last layer is set to , which
results in a single output that models the probability

.

For multi-class classi�cation, the sigmoid activation in the last layer can
be generalized to produce a vector of probability estimates

.

This activation is the function, where its -th output is de�ned as

for .

q L 1
h ∈ [0, 1]L

p(y = 1∣x)

σ

h ∈ △L
C

p(y = i∣x)

Softmax i

Softmax(z) = ,i
exp(z)∑j=1

C
j

exp(z)i

i = 1, ...,C

23 / 64

Regression
For regression problems, one usually starts with the assumption that

where is parameterized with a neural network which last layer does not
contain any �nal activation.

p(y∣x) = N (y;μ = f (x; θ), σ = 1),2

f

24 / 64

We have,

which recovers the common squared error loss .

arg p(d∣θ)
θ
max

= arg p(y = y ∣x , θ)
θ
max

x ,y ∈di i

∏ i i

= arg − log p(y = y ∣x , θ)
θ
min

x ,y ∈di i

∑ i i

= arg − log exp(− (y − f (x; θ)))
θ
min

x ,y ∈di i

∑ (
2π
1

2
1

i
2)

= arg (y − f (x; θ)) ,
θ
min

x ,y ∈di i

∑ i
2

ℓ(y,) = (y −)ŷ ŷ 2

25 / 64

(demo)

26 / 64

Training neural networks
In general, the loss functions do not admit a minimizer that can be
expressed analytically in closed form.

However, a minimizer can be found numerically, using a general
minimization technique such as gradient descent.

27 / 64

Gradient descent

Let denote a loss function de�ned over model parameters (e.g., and
).

To minimize , gradient descent uses local linear information to iteratively
move towards a (local) minimum.

For , a �rst-order approximation around can be de�ned as

L(θ) θ w
b

L(θ)

θ ∈ R0
d θ0

(ϵ; θ) = L(θ) + ϵ ∇ L(θ) + ∣∣ϵ∣∣ .L̂ 0 0
T

θ 0 2γ
1 2

28 / 64

A minimizer of the approximation is given for

which results in the best improvement for the step .

Therefore, model parameters can be updated iteratively using the update rule

where

 are the initial parameters of the model;

 is the learning rate;

both are critical for the convergence of the update rule.

(ϵ; θ)L̂ 0

∇ (ϵ; θ)ϵL̂ 0 = 0

= ∇ L(θ) + ϵ,θ 0
γ

1

ϵ = −γ∇ L(θ)θ 0

θ = θ − γ∇ L(θ),t+1 t θ t

θ0

γ

29 / 64

Example 1: Convergence to a local minima

30 / 64

Example 1: Convergence to a local minima

30 / 64

Example 1: Convergence to a local minima

30 / 64

Example 1: Convergence to a local minima

30 / 64

Example 1: Convergence to a local minima

30 / 64

Example 1: Convergence to a local minima

30 / 64

Example 1: Convergence to a local minima

30 / 64

Example 1: Convergence to a local minima

30 / 64

Example 2: Convergence to the global minima

31 / 64

Example 2: Convergence to the global minima

31 / 64

Example 2: Convergence to the global minima

31 / 64

Example 2: Convergence to the global minima

31 / 64

Example 2: Convergence to the global minima

31 / 64

Example 2: Convergence to the global minima

31 / 64

Example 2: Convergence to the global minima

31 / 64

Example 2: Convergence to the global minima

31 / 64

Example 3: Divergence due to a too large learning rate

32 / 64

Example 3: Divergence due to a too large learning rate

32 / 64

Example 3: Divergence due to a too large learning rate

32 / 64

Example 3: Divergence due to a too large learning rate

32 / 64

Example 3: Divergence due to a too large learning rate

32 / 64

Example 3: Divergence due to a too large learning rate

32 / 64

Stochastic gradient descent
In the empirical risk minimization setup, and its gradient decompose as

Therefore, in batch gradient descent the complexity of an update grows linearly
with the size of the dataset. This is bad!

L(θ)

L(θ)

∇L(θ)

= ℓ(y , f (x ; θ))
N

1

x ,y ∈di i

∑ i i

= ∇ℓ(y , f (x ; θ)).
N

1

x ,y ∈di i

∑ i i

N

33 / 64

Since the empirical risk is already an approximation of the expected risk, it
should not be necessary to carry out the minimization with great accuracy.

34 / 64

Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process depends on the examples
picked randomly at each iteration.

θ = θ − γ∇ℓ(y , f (x ; θ))t+1 t i(t+1) i(t+1) t

N

{θ ∣t = 1, ...}t i(t)

35 / 64

Batch gradient descent Stochastic gradient descent

Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process depends on the examples
picked randomly at each iteration.

θ = θ − γ∇ℓ(y , f (x ; θ))t+1 t i(t+1) i(t+1) t

N

{θ ∣t = 1, ...}t i(t)

36 / 64

Why is stochastic gradient descent still a good idea?

Informally, averaging the update

over all choices restores batch gradient descent.

Formally, if the gradient estimate is unbiased, e.g., if

then the formal convergence of SGD can be proved, under appropriate
assumptions (see references).

If training is limited to single pass over the data, then SGD directly
minimizes the expected risk.

θ = θ − γ∇ℓ(y , f (x ; θ))t+1 t i(t+1) i(t+1) t

i(t + 1)

E [∇ℓ(y , f (x ; θ))]i(t+1) i(t+1) i(t+1) t = ∇ℓ(y , f (x ; θ))
N

1

x ,y ∈di i

∑ i i t

= ∇L(θ)t

37 / 64

The excess error characterizes the expected risk discrepancy between the
Bayes model and the approximate empirical risk minimizer. It can be
decomposed as

where

 is the approximation error due to the choice of an hypothesis space,

 is the estimation error due to the empirical risk minimization principle,

 is the optimization error due to the approximate optimization
algorithm.

E R() − R(f)[f
~
∗
d

B]

= E R(f) − R(f) + E R(f) − R(f) + E R() − R(f)[∗ B] [∗
d

∗] [f
~
∗
d

∗
d]

= E + E + Eapp est opt

Eapp

E est

Eopt

38 / 64

A fundamental result due to Bottou and Bousquet (2011) states that stochastic
optimization algorithms (e.g., SGD) yield the best generalization performance (in
terms of excess error) despite being the worst optimization algorithms for
minimizing the empirical risk.

39 / 64

Automatic differentiation (teaser)
To minimize with stochastic gradient descent, we need the gradient

i.e., a vector that gathers the partial derivatives of the loss for each model
parameter for .

These derivatives can be evaluated automatically from the computational graph
of using automatic differentiation.

L(θ)

∇ℓ(θ) =

⎣
⎢
⎢
⎢
⎢
⎡ (θ)∂θ0

∂ℓ

⋮

(θ)∂θK−1
∂ℓ ⎦

⎥
⎥
⎥
⎥
⎤

θk k = 0,…,K − 1

ℓ

40 / 64

In Leibniz notations, the chain rule states that

∂θi

∂ℓ
=

k∈parents(ℓ)

∑
∂uk

∂ℓ

recursive case

∂θi

∂uk

41 / 64

Backpropagation

Since a neural network is a composition of differentiable functions, the total
derivatives of the loss can be evaluated backward, by applying the chain
rule recursively over its computational graph.

The implementation of this procedure is called reverse automatic
differentiation or backpropagation.

42 / 64

Let us consider a simpli�ed 1-hidden layer MLP and the following loss function:

for , , and .

f (x;W ,W)1 2

ℓ(y, ;W ,W)ŷ 1 2

= σ W σ W x(2
T (1

T))

= cross_ent(y,) + λ ∣∣W ∣∣ + ∣∣W ∣∣ŷ (1 2 2 2)

x ∈ Rp y ∈ R W ∈ R1
p×q W ∈ R2

q

43 / 64

In the forward pass, intermediate values are all computed from inputs to
outputs, which results in the annotated computational graph below:

44 / 64

The partial derivatives can be computed through a backward pass, by walking
through all paths from outputs to parameters in the computational graph and
accumulating the terms. For example, for we have:∂W1

∂ℓ

∂W1

∂ℓ

∂W1

∂u8

= +
∂u8

∂ℓ
∂W1

∂u8
∂u4

∂ℓ
∂W1

∂u4

= ...

45 / 64

Let us zoom in on the computation of the network output and of its derivative
with respect to .

Forward pass: values , , and are computed by traversing the
graph from inputs to outputs given , and .

Backward pass: by the chain rule we have

Note how evaluating the partial derivatives requires the intermediate values
computed forward.

ŷ

W1

u1 u2 u3 ŷ

x W1 W2

∂W1

∂ ŷ
=
∂u3

∂ ŷ
∂u2

∂u3
∂u1

∂u2
∂W1

∂u1

=
∂u3

∂σ(u)3
∂u2

∂W u2
T

2

∂u1

∂σ(u)1
∂W1

∂W x1T

46 / 64

Vanishing gradients
Training deep MLPs with many layers has for long (pre-2011) been very di�cult
due to the vanishing gradient problem.

Small gradients slow down, and eventually block, stochastic gradient
descent.

This results in a limited capacity of learning.

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.

47 / 64

Let us consider a simpli�ed 2-hidden layer MLP, with , such
that

Under the hood, this would be evaluated as

and its derivative as

x,w ,w ,w ∈ R1 2 3

f (x;w ,w ,w) = σ w σ w σ w x .1 2 3 (3 (2 (1)))

u1

u2

u3

u4

u5

ŷ

= w x1

= σ(u)1
= w u2 2

= σ(u)3
= w u3 4

= σ(u)5

∂w1
∂ ŷ

∂w1

∂ ŷ
=
∂u5

∂ ŷ
∂u4

∂u5
∂u3

∂u4
∂u2

∂u3
∂u1

∂u2
∂w1

∂u1

= w w x
∂u5

∂σ(u)5
3 ∂u3

∂σ(u)3
2 ∂u1

∂σ(u)1

48 / 64

The derivative of the sigmoid activation function is:

Notice that for all .

σ

(x) = σ(x)(1 − σ(x))
∂x
∂σ

0 ≤ (x) ≤∂x
∂σ

4
1 x

49 / 64

Assume that weights are initialized randomly from a Gaussian with
zero-mean and small variance, such that with high probability .

Then,

This implies that the derivative exponentially shrinks to zero as the number
of layers in the network increases.

Hence the vanishing gradient problem.

In general, bounded activation functions (sigmoid, tanh, etc) are prone to
the vanishing gradient problem.

Note the importance of a proper initialization scheme.

w ,w ,w1 2 3

−1 ≤ w ≤ 1i

= x
∂w1

∂ ŷ

≤ 4
1

∂u5

∂σ(u)5

≤1

w3

≤ 4
1

∂u3

∂σ(u)3

≤1

w2

≤ 4
1

∂u1

σ(u)1

∂w1
∂ ŷ

50 / 64

Recti�ed linear units
Instead of the sigmoid activation function, modern neural networks are for
most based on recti�ed linear units (ReLU) (Glorot et al, 2011):

ReLU(x) = max(0, x)

51 / 64

Note that the derivative of the ReLU function is

For , the derivative is unde�ned. In practice, it is set to zero.

ReLU(x) =
∂x
∂

{
0
1
if x ≤ 0
otherwise

x = 0

52 / 64

Therefore,

This solves the vanishing gradient problem, even for deep networks! (provided
proper initialization)

Note that:

The ReLU unit dies when its input is negative, which might block gradient
descent.

This is actually a useful property to induce sparsity.

This issue can also be solved using leaky ReLUs, de�ned as

for a small (e.g.,).

= w w x
∂w1

∂ ŷ

=1

∂u5

∂σ(u)5
3

=1

∂u3

∂σ(u)3
2

=1

∂u1

∂σ(u)1

LeakyReLU(x) = max(αx, x)

α ∈ R+ α = 0.1

53 / 64

Activation functions

54 / 64

(demo)

55 / 64

Universal approximation
Let us consider the 1-hidden layer MLP

This model can approximate any smooth 1D function, provided enough hidden
units.

f (x) = w ReLU(x+ b).∑ i i

56 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

57 / 64

Universal approximation theorem. (Cybenko 1989; Hornik et al, 1991) Let
be a bounded, non-constant continuous function. Let denote the -
dimensional hypercube, and denote the space of continuous functions
on . Given any and , there exists and

 such that

satis�es

It guarantees that even a single hidden-layer network can represent any
classi�cation problem in which the boundary is locally linear (smooth);

It does not inform about good/bad architectures, nor how they relate to the
optimization procedure.

The universal approximation theorem generalizes to any non-polynomial
(possibly unbounded) activation function, including the ReLU (Leshno,
1993).

σ(⋅)
Ip p

C(I)p
Ip f ∈ C(I)p ϵ > 0 q > 0

v ,w , b , i = 1, ..., qi i i

F (x) = v σ(w x+ b)
i≤q

∑ i i
T

i

∣f (x) − F (x)∣ < ϵ.
x∈Ip
sup

58 / 64

LEGO® Deep Learning

59 / 64

Yann LeCun, 2018.

People are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using
some form of gradient-based optimization.

60 / 64

DL as an architectural language

61 / 64

The toolbox

―
Credits: Oriol Vinyals, 2020. 62 / 64

https://twitter.com/OriolVinyalsML/status/1212422497339105280

LEGO® Creator Expert

AlphaStar, DeepMind 2019.
―
Credits: Vinyals et al, 2019. 63 / 64

https://www.nature.com/articles/s41586-019-1724-z

Tesla AI Day 2021Tesla AI Day 2021
Later bekijLater bekij…… DelenDelen

HydraNet, Tesla 2021.

64 / 64

https://www.youtube.com/watch?v=j0z4FweCy4M

The end.

64 / 64

References
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6), 386.

Bottou, L., & Bousquet, O. (2008). The tradeoffs of large scale learning. In
Advances in neural information processing systems (pp. 161-168).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
representations by back-propagating errors. nature, 323(6088), 533.

64 / 64

