Deep Learning

Lecture 12: Diffusion models

Prof. Gilles Louppe g.louppe@uliege.be

Today

- VAEs
- Variational diffusion models
- Score-based generative models

Caution: See also the side notes derived in class.

Applications

A few motivating examples.

Content generation

Diffusion models have emerged as powerful generative models, beating previous state-of-the-art models (such as GANs) on a variety of tasks.

Image super-resolution

Text-to-image generation

A group of teddy bears in suite in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk.

... or deepfakes.

Artistic tools and image editing

Inverse problems in medical imaging

PSNR: 15.32, SSIM: 0.796 PSNR: 17.79, SSIM: 0.454 PSNR: 17.60, SSIM: 0.471 PSNR: 27.88, SSIM: 0.908 PSNR: 35.57, SSIM: 0.929

(a) FISTA-TV

(b) cGAN

(c) Neumann

(d) SIN-4c-PRN

N (e) Ours

(f) Ground truth

A short recap.

Variational autoencoders

Training

$$egin{aligned} & heta^*, \phi^* = rg\max_{ heta, \phi} \mathbb{E}_{p(\mathbf{x})} \operatorname{ELBO}(\mathbf{x}; heta, \phi) \ &= rg\max_{ heta, \phi} \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log rac{p_{ heta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})}
ight] \ &= rg\max_{ heta, \phi} \mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{ heta}(\mathbf{x}|\mathbf{z})
ight] - \operatorname{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))
ight]. \end{aligned}$$

The prior matching term limits the expressivity of the model.

Solution: Make $p(\mathbf{z})$ a learnable distribution.

(Markovian) Hierarchical VAEs

The prior $p(\mathbf{z})$ is itself a VAE, and recursively so for its own hyper-prior.

Similarly to VAEs, training is done by maximizing the ELBO.

(See side notes.)

Variational diffusion models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein Stanford University

Eric A. Weiss University of California, Berkeley

Niru Maheswaranathan

Stanford University

Surya Ganguli Stanford University

S

Abstract

A central problem in machine learning involves modeling complex data-sets using highly flexible families of probability distributions in which learning, sampling, inference, and evaluation are still analytically or computationally tractable. Here, we develop an approach that simultaneously achieves both flexibility and tractability. The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable generative model of the data. This approach allows us to rapidly learn, sample from, and evaluate probabilities in deep generative models with thousands of layers or time steps, as well as to compute conditional and posterior probabilities under the learned model. We additionally release an open source reference impleJASCHA@STANFORD.EDU EAWEISS@BERKELEY.EDU NIRUM@STANFORD.EDU SGANGULI@STANFORD.EDU

these models are unable to aptly describe structure in rich datasets. On the other hand, models that are *flexible* can be molded to fit structure in arbitrary data. For example, we can define models in terms of any (non-negative) function $\phi(\mathbf{x})$ yielding the flexible distribution $p(\mathbf{x}) = \frac{\phi(\mathbf{x})}{Z}$, where Z is a normalization constant. However, computing this normalization constant is generally intractable. Evaluating, training, or drawing samples from such flexible models typically requires a very expensive Monte Carlo process.

A variety of analytic approximations exist which ameliorate, but do not remove, this tradeoff–for instance mean field theory and its expansions (T, 1982; Tanaka, 1998), variational Bayes (Jordan et al., 1999), contrastive divergence (Welling & Hinton, 2002; Hinton, 2002), minimum probability flow (Sohl-Dickstein et al., 2011b;a), minimum KL contraction (Lyu, 2011), proper scoring rules (Gneiting & Raftery, 2007; Parry et al., 2012), score matching (Hyvärinen, 2005), pseudolikelihood (Besag, 1975), loopy belief propagation (Murphy et al., 1999), and many, many more. Non-parametric methods (Gershman & Blei, 2012) can also be very effective¹. Variational diffusion models are Markovian HVAEs with the following constraints:

- The latent dimension is the same as the data dimension.
- The encoder is fixed to linear Gaussian transitions $q(\mathbf{x}_t | \mathbf{x}_{t-1})$.
- The hyper-parameters are set such that $q(\mathbf{x}_T | \mathbf{x}_0)$ is a standard Gaussian.

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

Forward diffusion process

Data

With $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, we have

$$egin{aligned} \mathbf{x}_t &= \sqrt{lpha_t} \mathbf{x}_{t-1} + \sqrt{1-lpha_t} \epsilon \ q(\mathbf{x}_t | \mathbf{x}_{t-1}) &= \mathcal{N}(\mathbf{x}_t; \sqrt{lpha_t} \mathbf{x}_{t-1}, (1-lpha_t) \mathbf{I}) \ q(\mathbf{x}_{1:T} | \mathbf{x}_0) &= \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1}) \end{aligned}$$

Diffusion kernel

Data

With $ar{lpha}_t = \prod_{i=1}^t lpha_i$ and $\epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I})$, we have

$$\mathbf{x}_t = \sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} \epsilon
onumber \ q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{ar{lpha}_t} \mathbf{x}_0, (1 - ar{lpha}_t) \mathbf{I})$$

Reverse denoising process

Data

$$egin{aligned} p(\mathbf{x}_{0:T}) &= p(\mathbf{x}_T) \prod_{t=1}^T p_ heta(\mathbf{x}_{t-1} | \mathbf{x}_t) \ p(\mathbf{x}_T) &= \mathcal{N}(\mathbf{x}_T; \mathbf{0}, I) \ p_ heta(\mathbf{x}_{t-1} | \mathbf{x}_t) &= \mathcal{N}(\mathbf{x}_{t-1}; \mu_ heta(\mathbf{x}_t, t), \sigma_ heta^2(\mathbf{x}_t, t) \mathbf{I}) \ \mathbf{x}_{t-1} &= \mu_ heta(\mathbf{x}_t, t) + \sigma_ heta(\mathbf{x}_t, t) \mathbf{z} \end{aligned}$$

with $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

Training

For learning the parameters θ of the reverse process, we can form a variational lower bound on the log-likelihood of the data as

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[\log p_{ heta}(\mathbf{x}_0)
ight] \geq \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[\log rac{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}
ight] := L$$

This objective can be rewritten as

$$egin{split} L &= \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\lograc{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}
ight] \ &= \mathbb{E}_{q(\mathbf{x}_0)} \left[L_0 - \sum_{t>1} L_{t-1} - L_T
ight] \end{split}$$

where

- $L_0 = \mathbb{E}_{q(\mathbf{x}_1|\mathbf{x}_0)}[\log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)]$ can be interpreted as a reconstruction term. It can be approximated and optimized using a Monte Carlo estimate.
- $L_{t-1} = \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} \operatorname{KL}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) || p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t))$ is a denoising matching term. The transition $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$ provides a learning signal for the reverse process, since it defines how to denoise the noisified input \mathbf{x}_t with access to the original input \mathbf{x}_0 .
- $L_T = \text{KL}(q(\mathbf{x}_T | \mathbf{x}_0) || p_{\theta}(\mathbf{x}_T))$ represents how close the distribution of the final noisified input is to the standard Gaussian. It has no trainable parameters.

The distribution $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ is the tractable posterior distribution

$$egin{aligned} q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) &= rac{q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)} \ &= \mathcal{N}(\mathbf{x}_{t-1};\mu_q(\mathbf{x}_t,\mathbf{x}_0,t),\sigma_t^2I) \end{aligned}$$

where

$$egin{aligned} \mu_q(\mathbf{x}_t,\mathbf{x}_0,t) &= rac{\sqrt{lpha_t}(1-arlpha_{t-1})}{1-arlpha_t}\mathbf{x}_t + rac{\sqrt{arlpha_{t-1}}(1-lpha_t)}{1-arlpha_t}\mathbf{x}_0 \ \sigma_t^2 &= rac{(1-lpha_t)(1-arlpha_{t-1})}{1-arlpha_t} \end{aligned}$$

Interpretation 1: Denoising

To minimize the expected KL divergence L_{t-1} , we need to match the reverse process $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ to the tractable posterior. Since both are Gaussian, we can match their means and variances.

By construction, the variance of the reverse process can be set to the known variance σ_t^2 of the tractable posterior.

For the mean, we reuse the analytical form of $\mu_q(\mathbf{x}_t, \mathbf{x}_0, t)$ and parameterize the mean of the reverse process using a **denoising network** as

$$\mu_ heta(\mathbf{x}_t,t) = rac{\sqrt{lpha_t}(1-ar lpha_{t-1})}{1-ar lpha_t}\mathbf{x}_t + rac{\sqrt{ar lpha_{t-1}}(1-lpha_t)}{1-ar lpha_t}\hat{\mathbf{x}}_ heta(\mathbf{x}_t,t).$$

Under this parameterization, the minimization of expected KL divergence L_{t-1} can be rewritten as

$$egin{aligned} &rg\min_{ heta} \mathbb{E}_{q(\mathbf{x}_t \mid \mathbf{x}_0)} \mathrm{KL}(q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) || p_{ heta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)) \ &= rg\min_{ heta} \mathbb{E}_{q(\mathbf{x}_t \mid \mathbf{x}_0)} rac{1}{2\sigma_t^2} || \mu_{ heta}(\mathbf{x}_t, t) - \mu_q(\mathbf{x}_t, \mathbf{x}_0, t) ||_2^2 \ &= rg\min_{ heta} \mathbb{E}_{q(\mathbf{x}_t \mid \mathbf{x}_0)} rac{1}{2\sigma_t^2} rac{arlpha_{t-1}(1-lpha_t)^2}{(1-arlpha_t)^2} || \hat{\mathbf{x}}_{ heta}(\mathbf{x}_t, t) - \mathbf{x}_0 ||_2^2 \end{aligned}$$

Optimizing a VDM amounts to learning a neural network that predicts the original ground truth \mathbf{x}_0 from a noisy input \mathbf{x}_t .

Finally, minimizing the summation of the L_{t-1} terms across all noise levels t can be approximated by minimizing the expectation over all timesteps as

 $rg\min_{ heta} \mathbb{E}_{t \sim U\{2,T\}} \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} \mathrm{KL}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) | | p_{ heta}(\mathbf{x}_{t-1} | \mathbf{x}_t)).$

Interpretation 2: Noise prediction

A second interpretation of VDMs can be obtained using the reparameterization trick. Using

$$\mathbf{x}_0 = rac{\mathbf{x}_t - \sqrt{1 - ar{lpha}_t} \epsilon}{\sqrt{ar{lpha}_t}},$$

we can rewrite the mean of the tractable posterior as

$$\begin{split} \mu_q(\mathbf{x}_t, \mathbf{x}_0, t) &= \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} (1 - \alpha_t)}{1 - \bar{\alpha}_t} \mathbf{x}_0 \\ &= \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} (1 - \alpha_t)}{1 - \bar{\alpha}_t} \frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon}{\sqrt{\bar{\alpha}_t}} \\ &= \dots \\ &= \frac{1}{\sqrt{\alpha_t}} \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{(1 - \bar{\alpha}_t)\alpha_t}} \epsilon \end{split}$$

Accordingly, the mean of the reverse process can be parameterized with a **noise-prediction network** as

$$\mu_{ heta}(\mathbf{x}_t,t) = rac{1}{\sqrt{lpha_t}} \mathbf{x}_t - rac{1-lpha_t}{\sqrt{(1-ar lpha_t)lpha_t}} \epsilon_{ heta}(\mathbf{x}_t,t).$$

Under this parameterization, the minimization of the expected KL divergence L_{t-1} can be rewritten as

$$rgmin_{ heta} \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} \operatorname{KL}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) || p_{ heta}(\mathbf{x}_{t-1} | \mathbf{x}_t))
onumber \ = rgmin_{ heta} \mathbb{E}_{\mathcal{N}(\epsilon; \mathbf{0}, I)} rac{1}{2\sigma_t^2} rac{(1 - lpha_t)^2}{(1 - ar{lpha}_t) lpha_t} || \epsilon_{ heta}(\underbrace{\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} \epsilon}_{\mathbf{x}_t}, t) - \epsilon ||_2^2$$

Optimizing a VDM amounts to learning a neural network that predicts the noise ϵ that was added to the original ground truth \mathbf{x}_0 to obtain the noisy \mathbf{x}_t .

Algorithms

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Network architectures

Diffusion models often use U-Net architectures with ResNet blocks and selfattention layers to represent $\epsilon_{\theta}(\mathbf{x}_t, t)$.

Score-based generative models

The score function

The score function $\nabla_{\mathbf{x}_0} \log q(\mathbf{x}_0)$ is a vector field that points in the direction of the highest density of the data distribution $q(\mathbf{x}_0)$.

It can be used to find modes of the data distribution or to generate samples by Langevin dynamics.

Interpretation 3: Denoising score matching

A third interpretation of VDMs can be obtained by reparameterizing \boldsymbol{x}_0 using Tweedie's formula, as

$$\mathbf{x}_0 = rac{\mathbf{x}_t + (1-ar{lpha}_t)
abla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0)}{\sqrt{ar{lpha}_t}},$$

which we can plug into the the mean of the tractable posterior to obtain

$$egin{aligned} \mu_q(\mathbf{x}_t,\mathbf{x}_0,t) &= rac{\sqrt{lpha_t}(1-arlpha_{t-1})}{1-arlpha_t}\mathbf{x}_t + rac{\sqrt{arlpha_{t-1}}(1-lpha_t)}{1-arlpha_t}\mathbf{x}_0 \ &= ... \ &= rac{1}{\sqrt{lpha_t}}\mathbf{x}_t + rac{1-lpha_t}{\sqrt{lpha_t}}
abla_{\mathbf{x}_t}\log q(\mathbf{x}_t|\mathbf{x}_0). \end{aligned}$$

The mean of the reverse process can be parameterized with a **score network** as

$$\mu_{ heta}(\mathbf{x}_t,t) = rac{1}{\sqrt{lpha_t}} \mathbf{x}_t + rac{1-lpha_t}{\sqrt{lpha_t}} s_{ heta}(\mathbf{x}_t,t).$$

Under this parameterization, the minimization of the expected KL divergence L_{t-1} can be rewritten as

$$egin{aligned} &rg\min_{ heta} \mathbb{E}_{q(\mathbf{x}_t \mid \mathbf{x}_0)} \mathrm{KL}(q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) || p_{ heta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)) \ &= rg\min_{ heta} \mathbb{E}_{q(\mathbf{x}_t \mid \mathbf{x}_0)} rac{1}{2\sigma_t^2} rac{(1-lpha_t)^2}{lpha_t} || s_{ heta}(\mathbf{x}_t, t) -
abla_{\mathbf{x}_t} \log q(\mathbf{x}_t \mid \mathbf{x}_0) ||_2^2 \end{aligned}$$

Optimizing a score-based model amounts to learning a neural network that predicts the score $\nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0)$ of the tractable posterior.

Since $s_{\theta}(\mathbf{x}_t, t)$ is learned in expectation over the data distribution $q(\mathbf{x}_0)$, the score network will eventually approximate the score of the marginal distribution $q(\mathbf{x}_t)$, for each noise level t, that is

 $s_{ heta}(\mathbf{x}_t,t) pprox
abla_{\mathbf{x}_t} \log q(\mathbf{x}_t).$

Ancestral sampling

Sampling from the score-based diffusion model is done by starting from $\mathbf{x}_T \sim p(\mathbf{x}_T) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ and then following the estimated reverse Markov chain, as

$$\mathbf{x}_{t-1} = rac{1}{\sqrt{lpha_t}} \mathbf{x}_t + rac{1-lpha_t}{\sqrt{lpha_t}} s_ heta(\mathbf{x}_t,t) + \sigma_t \mathbf{z}_t,$$

where $\mathbf{z}_t \sim \mathcal{N}(\mathbf{0},\mathbf{I})$, for t=T,...,1.

Conditional sampling

To turn a diffusion model $p_{\theta}(\mathbf{x}_{0:T})$ into a conditional model, we can add conditioning information y at each step of the reverse process, as

$$p_{ heta}(\mathbf{x}_{0:T}|y) = p(\mathbf{x}_T) \prod_{t=1}^T p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t,y).$$

With a score-based model however, we can use the Bayes rule and notice that

 $abla_{\mathbf{x}_t} \log p(\mathbf{x}_t|y) =
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t) +
abla_{\mathbf{x}_t} \log p(y|\mathbf{x}_t),$

where we leverage the fact that the gradient of $\log p(y)$ with respect to \mathbf{x}_t is zero.

In other words, controllable generation can be achieved by adding a conditioning signal during sampling, without having to retrain the model. E.g., train an extra classifier $p(y|\mathbf{x}_t)$ and use it to control the sampling process by adding its gradient to the score.

Continuous-time diffusion models

Data

With $eta_t = 1 - lpha_t$, we can rewrite the forward process as

$$egin{aligned} \mathbf{x}_t &= \sqrt{lpha_t} \, \mathbf{x}_{t-1} + \sqrt{1-lpha_t} \mathcal{N}(\mathbf{0},\mathbf{I}) \ &= \sqrt{1-eta_t} \mathbf{x}_{t-1} + \sqrt{eta_t} \mathcal{N}(\mathbf{0},\mathbf{I}) \ &= \sqrt{1-eta(t)\Delta_t} \mathbf{x}_{t-1} + \sqrt{eta(t)\Delta_t} \mathcal{N}(\mathbf{0},\mathbf{I}) \end{aligned}$$

In the limit of many small steps, i.e. as $\Delta_t o 0$, we can further rewrite the forward process as

$$egin{aligned} \mathbf{x}_t &= \sqrt{1-eta(t)\Delta_t}\mathbf{x}_{t-1} + \sqrt{eta(t)\Delta_t}\mathcal{N}(\mathbf{0},\mathbf{I}) \ &pprox \mathbf{x}_{t-1} - rac{eta(t)\Delta_t}{2}\mathbf{x}_{t-1} + \sqrt{eta(t)\Delta_t}\mathcal{N}(\mathbf{0},\mathbf{I}) \end{aligned}$$

This last update rule corresponds to the Euler-Maruyama discretization of the stochastic differential equation (SDE)

$$\mathrm{d}\mathbf{x}_t = -rac{1}{2}eta(t)\mathbf{x}_t\mathrm{d}t + \sqrt{eta(t)}\mathrm{d}\mathbf{w}_t$$

describing the diffusion in the infinitesimal limit.

The reverse process satisfies a reverse-time SDE that can be derived analytically from the forward-time SDE and the score of the marginal distribution $q(\mathbf{x}_t)$, as

$$\mathrm{d}\mathbf{x}_t = \left[-rac{1}{2}eta(t)\mathbf{x}_t - eta(t)
abla_{\mathbf{x}_t}\log q(\mathbf{x}_t)
ight]\mathrm{d}t + \sqrt{eta(t)}\mathrm{d}\mathbf{w}_t.$$

The score $\nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t)$ of the marginal diffused density $q(\mathbf{x}_t)$ is not tractable, but can be estimated using denoising score matching (DSM) by solving

 $rg\min_{ heta} \mathbb{E}_{q(\mathbf{x}_0)} \mathbb{E}_{t \sim U[0,T]} \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} || s_{ heta}(\mathbf{x}_t,t) -
abla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0) ||_2^2,$

which will result in $s_{\theta}(\mathbf{x}_t, t) \approx \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t)$ because of the outer expectation over $q(\mathbf{x}_0)$.

This is just the **same objective** as for VDMs! (See Interpretation 3)

Latent-space diffusion models

Directly modeling the data distribution can be make the denoising process difficult to learn. A more effective approach is to combine VAEs with a diffusion prior.

- The distribution of latent embeddings is simpler to model.
- Diffusion on non-image data is possible with tailored autoencoders.

The end.

Credits: Blattmann et al, 2023. Prompt: "A teddy bear is playing the electric guitar, high definition, 4k."