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Today

e VAEsS
e Variational diffusion models

e Score-based generative models

Caution: See also the side notes derived in class.
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Applications

A few motivating examples.
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Content generation

Diffusion models have emerged as powerful generative models, beating
previous state-of-the-art models (such as GANs) on a variety of tasks.

Credits: Dhariwal and Nichol, 2021; Ho et al, 2021. 4/49


https://arxiv.org/pdf/2105.05233.pdf
https://arxiv.org/pdf/2106.15282.pdf

Image super-resolution

Input : 64x64

Credits: Sahariaetal, 2021. 5/49


https://arxiv.org/abs/2104.07636

Text-to-image generation

A group of teddy bears in suite in a corporate office celebrating
the birthday of their friend. There is a pizza cake on the desk.

Credits: Saharia et al, 2022. 6/49


https://arxiv.org/abs/2205.11487

... or deepfakes.
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Artistic tools and image editing
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Credits: Meng et al, 2021.


https://arxiv.org/abs/2108.01073

Inverse problems in medical imaging

PSNR: 15.32, SSIM: 0.796 PSNR: 17.79, SSIM: 0.454 PSNR: 17.60, SSIM: 0.471 PSNR: 27.88, SSIM: 0.908 PSNR: 35.57, SSIM: 0.929

(a) FISTA-TV (b) cGAN

Credits: Song et al, 2021.
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https://arxiv.org/pdf/2111.08005.pdf

VAEs

A short recap.
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Variational autoencoders

po(x | 2)

GL_{)

q¢(z | x)



Training

0", ¢* = arg max Epx) ELBO(x; 0, ¢)

¢

- Do (X, Z)
= arg II;,aQ;X Ep(x) EQ¢(Z|X) [].Og q¢ (Z‘X) ]

= argmax By [Eq,(ajs) 108 po(x|2)] — KL(g5(z]) |p(2))].
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The prior matching term limits the expressivity of the model.

Solution: Make p(z) a learnable distribution.
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(Markovian) Hierarchical VAEs

The prior p(z) is itself a VAE, and recursively so for its own hyper-prior.

po(x | 1) po(z1 | z2) 0(z2 | z3)  po(zr_1| 2Z7)

% Z \ X Q¢ Zy | Z1 Z3 | Zz) Q¢(ZT | ZT—1)



Similarly to VAEs, training is done by maximizing the ELBO.

(See side notes.)
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Variational diffusion models
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arXiv:1503.03585v8 [cs.LG] 18 Nov 2015

Deep Unsupervised Learning using
Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein
Stanford University

Eric A. Weiss
University of California, Berkeley

Niru Maheswaranathan
Stanford University

Surya Ganguli
Stanford University

Abstract

A central problem in machine learning involves
modeling complex data-sets using highly flexi-
ble farnilies of probability distributions in which
learning, sampling, inference, and evaluation
are still analytically or computationally tractable.
Here, we develop an approach that simultane-
ously achieves both flexibility and tractability.
The essential idea, inspired by non-equilibrium
statistical physics, 1s to systematically and slowly
destroy structure in a data distribution through
an iterative forward diffusion process. We then
learn a reverse diffusion process that restores
structure in data, yielding a highly flexible and
tractable generative model of the data. This ap-
proach allows us to rapidly learn, sample from,
and evaluate probabilities in deep generative
models with thousands of layers or time steps,
as well as to compute conditional and posterior
probabilities under the learned model. We addi-
tionally release an open source reference imple-

JASCHA @STANFORD.EDU

EAWEISS @ BERKELEY.EDU

NIRUM @ STANFORD.EDU

SGANGULI@STANFORD.EDU

these models are unable to aptly describe structure in rich
datasets. On the other hand, models that are flexible can be
molded to fit structure in arbitrary data. For example, we
can define models in terms of any (non-negative) function
¢(x) yielding the flexible distribution p (x) = %, where
Z is a normalization constant. However, computing this
normalization constant 1s generally intractable. Evaluating,
training, or drawing samples from such flexible models typ-
ically requires a very expensive Monte Carlo process.

A variety of analytic approximations exist which amelio-
rate, but do not remove, this tradeoff—for instance mean
field theory and its expansions (T, 1982; Tanaka, 1998),
variational Bayes (Jordan et al., 1999), contrastive diver-
gence (Welling & Hinton, 2002; Hinton, 2002), minimum
probability flow (Sohl-Dickstein et al., 201 Ib:a), minimum
KL contraction (Lyu, 2011), proper scoring rules (Gneit-
ing & Raftery, 2007; Parry et al., 2012), score matching
(Hyviirinen, 20035), pseudolikelihood (Besag, 1975), loopy
belief propagation (Murphy et al., 1999), and many. many
more. Non-parametric methods (Gershman & Blei, 2012)
can also be very effective’.
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Variational diffusion models are Markovian HVAEs with the following
constraints:

e The latent dimension is the same as the data dimension.
« The encoder is fixed to linear Gaussian transitions q(x;|x; 1).

« The hyper-parameters are set such that q(xr|x ) is a standard Gaussian.

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Credits: Kreis et al, 2022. 18/49


https://cvpr2022-tutorial-diffusion-models.github.io/

Forward diffusion process

Forward diffusion process (fixed)

>
>

Data Noise

X9 X3 Xy vee X7

A A A J\ N I

With € ~ N (0, I), we have

Xt = VouXi—1 +vV1—oqe
q(x¢|xs 1) = (Xt§\/ atXi-1, (1 — oy)I)

q(x1.7|%0) Hq X¢|%X¢-1)

Credits: Kreis et al, 2022.
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https://cvpr2022-tutorial-diffusion-models.github.io/
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https://udlbook.github.io/udlbook/

Diffusion kernel

Forward diffusion process (fixed)

Data Noise

With oy = H§:1 a; and € ~ N (0, I), we have

X; = VauXg + V1 — aye
q(Xt’X()) — N(xt§ \/C_V_tXOa (1 - C_Vt)I)

Credits: Kreis et al, 2022. 21/49


https://cvpr2022-tutorial-diffusion-models.github.io/
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Credits: Simon J.D. Prince, 2023.
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Credits: Simon J.D. Prince, 2023.
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https://udlbook.github.io/udlbook/

Reverse denoising process

 Reverse denoising process (generative)

Data Noise

A A A A A A

T

p(xo.7) = p(x1) HP@ (x¢-1/%¢)

p(xr) = N(x7;0,1)
po(xe—1|xt) = N (x¢—1;5 po(xe, ), 05 (x4, t)I)
xt-1 = po(x¢,t) + oo(x¢, 1)z

with z ~ N(0, I).

Credits: Kreis et al, 2022. 24 /49


https://cvpr2022-tutorial-diffusion-models.github.io/

Training

For learning the parameters 6 of the reverse process, we can form a variational
lower bound on the log-likelihood of the data as

po(X0.7) ] T

E, x)|lo X0)| = Eq(x)q(xprx0) |10
a(xo) 10829 (%0)] = Eq(xy)g(xsal >[ 8 4 Grr| )
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This objective can be rewritten as

qz(jjc(zro!:;)) ) ]

Ly — Z Li 1 — LT]

t>1

L = Eq(XO)Q(XlzT\XO) llog

— Eq(

X())

where

e Ly = Eg(x,|x,)log pg(x0|x1)] can be interpreted as a reconstruction term.

It can be approximated and optimized using a Monte Carlo estimate.

o Ly 1 = By, xo) KL(q(xt-1|%¢, %0) | |Po (%:-1|%¢)) is @ denoising
matching term. The transition q(x;_1|x;, X ) provides a learning signal for
the reverse process, since it defines how to denoise the noisified input x;
with access to the original input x.

o L7 = KL(q(x7|x0)||pe(x1)) represents how close the distribution of the
final noisified input is to the standard Gaussian. It has no trainable
parameters.
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Q(Xt—l | Xt,Xo) Q(Xt | Xt+17X0)
L~ L

pe(Xt—1 ‘ Xt) Pe(xt | Xt+1)

The distribution q(x;_1|x;, X ) is the tractable posterior distribution

q(x¢|x¢-1,%0)q(xt-1|%0)
q(x¢|x0)
— N(Xt—l;,u’q(xtaxmt)a O-t2[)

Q(thﬂxt,xo) =

where

Jou (1 — oy N ou_1(1 —
tq (X, Xo,t) = 2l _at 1)Xt+ % = at)Xo
].—Oét l—at

o (1—oy)(1— )

].—Oft




Interpretation 1: Denoising

To minimize the expected KL divergence L; 1, we need to match the reverse
process py(x:—1|x¢) to the tractable posterior. Since both are Gaussian, we can
match their means and variances.

By construction, the variance of the reverse process can be set to the known
variance o7 of the tractable posterior.

For the mean, we reuse the analytical form of u, (x¢, X0, t) and parameterize
the mean of the reverse process using a denoising network as

Ja(1— a,. a1 (1 —
po(X¢,t) = Gl _at 1)Xt‘|‘ %1 = at)ia(xtat)-
1 — oy 1— oy
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Under this parameterization, the minimization of expected KL divergence L; 1
can be rewritten as

arg mein IEj’q(xt|XO)I<L(q(Xt—1 |Xt7 X0 )’ ’p9 (Xt—l |Xt))
: 1
:argmlnEq(xt|xo) 2 H:UJG(Xt’t) - MQ(XMXOat)H%
0 20;

. 1 &t_l (1 — ozt)2 " 2
= arg malnEq(xt|xo) 207 (1— &) |[X0(x¢,t) — X0]|3

Optimizing a VDM amounts to learning a neural network that predicts the
original ground truth x¢ from a noisy input x;.
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Finally, minimizing the summation of the L; 1 terms across all noise levels t
can be approximated by minimizing the expectation over all timesteps as

arg IIleiIl Eth{?,T} ]Eq(xt|x0)KL(q(xt—1 ‘Xta X0)| |p9 (xt—l |Xt))-

30/49



Interpretation 2: Noise prediction

A second interpretation of VDMs can be obtained using the reparameterization

trick. Using

X; — /1 — e
Var
we can rewrite the mean of the tractable posterior as

Vou(l —ay—q) N Vo 1(1— ay)

Xp) —

t) =
,U/q(Xt,X(), ) 1_0_415 Xt ].—at X0
_ \/Oét(].—@t_l)x 4 \/&t_1(1—at)xt—\/1—c_vte
1 — oy ' 1 — oy
1 ].—at
— Xt — €

\/(1 — Qy)oy

it
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Accordingly, the mean of the reverse process can be parameterized with a
noise-prediction network as

( t) 1 1— (87
po(Xe,t) = ——%; —
t Vo t \/(1 — Q¢ )oy

Under this parameterization, the minimization of the expected KL divergence
L;_1 can be rewritten as

ee(xta t)

arg min I (s 30 ) KL (q (36— 1 [ %4, X0 )| | o (X1 |%¢))

1 (1—- o) ; :
=00 | (aixo + VT Gre, 1) — el
t N

20't2 (]. — &t)a
Xt

—argmin Ey (o,

Optimizing a VDM amounts to learning a neural network that predicts the

noise € that was added to the original ground truth x( to obtain the noisy
Xt.
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Algorithms

Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: x7 ~ N(0,1)
2: XONQ(_XO) 2: fort="T,...,1do
PN [j{;‘(l(f)o%n({l’ - T}) 3. z~N(0,1)ift>1,elsez=0
C e , -
5: Take gradient descent step on 4 X1 = % (xt - \}Wee(xtvt)> + otz
Vo ||e — €eg(vVarxo + V1 — ae, 1:)”2 5: end for
6: until converged 6: return xo




Network architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-
attention layers to represent eg(x¢, t).

> €g(x¢,1)

I
I
I
I
I
1
L

[

Time Representatlon 1' I

Fully-connected
Layers

Credits: Kreis et al, 2022. 34/49


https://cvpr2022-tutorial-diffusion-models.github.io/

Score-based generative models
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The score function

The score function Vi, log q(x¢) is a vector field that points in the direction of

the highest density of the data distribution g(xg ).

It can be used to find modes of the data distribution or to generate samples by

Langevin dynamics.

Credits: Song, 2021.
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https://yang-song.net/blog/2021/score/

Interpretation 3: Denoising score matching

A third interpretation of VDMs can be obtained by reparameterizing xg using
Tweedie's formula, as

x; + (1 — &) Vy, log q(x¢|x0)
e ’
which we can plug into the the mean of the tractable posterior to obtain

o (1 — oy vi—1(1 —
1o (%0, %0, £) = Vou( i 1)Xt+ Va1 ( h at)xo
1 — oy 1 — oy

X0 —

1 ]l -«
=+ 2V, log g(xixy).

Vo, ' ar
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The mean of the reverse process can be parameterized with a score network as

1 1l -«
po(x¢,t) = —x; + :

Oét A/ Ot

Under this parameterization, the minimization of the expected KL divergence
L;_1 can be rewritten as

So(x¢,t).

arg mein IEq(x,g|)4:0):K]:‘(Q(Xt—1 ‘Xta X0 )’ ’p9 (Xt—l ’xt))

, 1 (1—oy)?
— arg m@m Eq(xt|x0) 2‘7t2 o

[1s6(x¢,) — Vix, log q(x:|%0)][;

Optimizing a score-based model amounts to learning a neural network that
predicts the score Vy, log q(x;|xg) of the tractable posterior.
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Since sg(x¢, t) is learned in expectation over the data distribution g(xg ), the
score network will eventually approximate the score of the marginal distribution
q(x¢), for each noise level ¢, that is

so(xt,t) ~ Vi, log g(x¢).
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Ancestral sampling

Sampling from the score-based diffusion model is done by starting from

x7 ~ p(xr) = N(0,I)and then following the estimated reverse Markov
chain, as

1 4 ].—Oét
X
\/at ' A/ Ot

where z; ~ N (0,1I),fort =T,..., 1.

Xi—1 —

So(x¢,t) + 0124,
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Conditional sampling
To turn a diffusion model pp(xo.7) into a conditional model, we can add
conditioning information y at each step of the reverse process, as

T

po(Xo:7|y) = p(x1) HP@ (%¢-1[%4, ).
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With a score-based model however, we can use the Bayes rule and notice that

Vx, logp(x:|y) = Vy, logp(x;) + Vy, log p(y|x;),

where we leverage the fact that the gradient of log p(y) with respect to x; is
zero.

In other words, controllable generation can be achieved by adding a
conditioning signal during sampling, without having to retrain the model. E.g.,
train an extra classifier p(y|x;) and use it to control the sampling process by
adding its gradient to the score.
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Continuous-time diffusion models

Forward diffusion process (fixed)

Y
>

Data Noise

o A A A A A

With B; = 1 — a4, we can rewrite the forward process as

x: = VJagxi-1 + V1 — aN(0,1)
= /1 - Bixi 1 + /B N(0,1)
= V1 - B(t)Axi—1 + /BE)AN(0,T)

Credits: Kreis et al, 2022. 43 /49


https://cvpr2022-tutorial-diffusion-models.github.io/

In the limit of many small steps, i.e. as A; — 0, we can further rewrite the
forward process as

\/1— Atxt 1 ‘|‘\/ AtNO I

Xyl — B( 2)At xi-1 + v/ B()AN(0,T)

This last update rule corresponds to the Euler-Maruyama discretization of the
stochastic differential equation (SDE)

dx; = ——ﬁ )x:dt + +/B(t)dw,

describing the diffusion in the infinitesimal limit.
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—— Stochastic process

Credits: Song, 2021. A5/ 49


https://yang-song.net/blog/2021/score/

The reverse process satisfies a reverse-time SDE that can be derived analytically
from the forward-time SDE and the score of the marginal distribution g(x;), as

1
dx; = —iﬂ(t)xt — B(t)Vx, log q(x¢) | dt + v/ B(t)dw,.
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—— Reverse stochastic process

Credits: Song, 2021.



https://yang-song.net/blog/2021/score/

The score Vy, log q(x:) of the marginal diffused density g(x;) is not tractable,
but can be estimated using denoising score matching (DSM) by solving

arg mein]Eq(xo)EtNU[o,T] Eq(xt|x0) ‘ |30 (Xt7 t) — Vy, log (J(Xt|x0)| |§7

which will result in sp(x¢,t) &~ Vx, log q(x:) because of the outer expectation
over q(xo).

This is just the same objective as for VDMs! (See Interpretation 3)
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Latent-space diffusion models

Directly modeling the data distribution can be make the denoising process
difficult to learn. A more effective approach is to combine VAEs with a diffusion
prior.

e The distribution of latent embeddings is simpler to model.

 Diffusion on non-image data is possible with tailored autoencoders.

Latent Space Diffusion
Datax % (20]) p(zo) p(z1)
e q(zg|x
xS 2
——=a\ ' C

<>

£: |

— =

Reconst.  t———— | ¢ =
p(x|z0) Decoder KL(q(zo|x)||p(z0)) Latent Space Denoising

Credits: Vahdat etal, 2021.
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https://nvlabs.github.io/LSGM/

The end.

Credits: Blattmann et al, 2023. Prompt: "Ateddy bear is playing the electric guitar, high definition, 4k 49/49


https://research.nvidia.com/labs/toronto-ai/VideoLDM/

