
Deep Learning
Lecture 12: Diffusion models

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 49

mailto:g.louppe@uliege.be


Today
VAEs

Variational diffusion models

Score-based generative models

Caution: See also the side notes derived in class.

2 / 49



Applications
A few motivating examples.
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Content generation

 

Diffusion models have emerged as powerful generative models, beating
previous state-of-the-art models (such as GANs) on a variety of tasks.

―
Credits: Dhariwal and Nichol, 2021; Ho et al, 2021. 4 / 49

https://arxiv.org/pdf/2105.05233.pdf
https://arxiv.org/pdf/2106.15282.pdf


Image super-resolution

―
Credits: Saharia et al, 2021. 5 / 49

https://arxiv.org/abs/2104.07636


Text-to-image generation

A group of teddy bears in suite in a corporate o�ce celebrating
the birthday of their friend. There is a pizza cake on the desk.

―
Credits: Saharia et al, 2022. 6 / 49

https://arxiv.org/abs/2205.11487


... or deepfakes.
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Artistic tools and image editing

―
Credits: Meng et al, 2021. 8 / 49

https://arxiv.org/abs/2108.01073


Inverse problems in medical imaging

―
Credits: Song et al, 2021. 9 / 49

https://arxiv.org/pdf/2111.08005.pdf


VAEs
A short recap.
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Variational autoencoders
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Training

θ , ϕ∗ ∗ = arg E ELBO(x; θ, ϕ)
θ,ϕ
max p(x)

= arg E E log
θ,ϕ
max p(x) q (z∣x)ϕ

[
q (z∣x)ϕ

p (x, z)θ ]

= arg E E log p (x∣z) − KL(q (z∣x)∣∣p(z)) .
θ,ϕ
max p(x) [ q (z∣x)ϕ

[ θ ] ϕ ]
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The prior matching term limits the expressivity of the model.

Solution: Make  a learnable distribution.p(z)
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(Markovian) Hierarchical VAEs

The prior  is itself a VAE, and recursively so for its own hyper-prior.p(z)
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Similarly to VAEs, training is done by maximizing the ELBO.

(See side notes.)
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Variational diffusion models

16 / 49



17 / 49



Variational diffusion models are Markovian HVAEs with the following
constraints:

The latent dimension is the same as the data dimension.

The encoder is �xed to linear Gaussian transitions .

The hyper-parameters are set such that  is a standard Gaussian.

q(x ∣x )t t−1

q(x ∣x )T 0

―
Credits: Kreis et al, 2022. 18 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/


Forward diffusion process

With , we haveϵ ∼ N (0, I)

xt

q(x ∣x )t t−1

q(x ∣x )1:T 0

= x + ϵαt t−1 1 − αt

= N (x ; x , (1 − α )I)t αt t−1 t

= q(x ∣x )
t=1

∏
T

t t−1

―
Credits: Kreis et al, 2022. 19 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/


―
Credits: Simon J.D. Prince, 2023. 20 / 49

https://udlbook.github.io/udlbook/


Diffusion kernel

With  and , we have= αᾱt ∏i=1
t

i ϵ ∼ N (0, I)

xt

q(x ∣x )t 0

= x + ϵᾱt 0 1 − ᾱt

= N (x ; x , (1 − )I)t ᾱt 0 ᾱt

―
Credits: Kreis et al, 2022. 21 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/


―
Credits: Simon J.D. Prince, 2023. 22 / 49

https://udlbook.github.io/udlbook/


―
Credits: Simon J.D. Prince, 2023. 23 / 49

https://udlbook.github.io/udlbook/


Reverse denoising process

with .

p(x )0:T

p(x )T
p (x ∣x )θ t−1 t

xt−1

= p(x ) p (x ∣x )T

t=1

∏
T

θ t−1 t

= N (x ; 0, I)T

= N (x ;μ (x , t), σ (x , t)I)t−1 θ t θ
2

t

= μ (x , t) + σ (x , t)zθ t θ t

z ∼ N (0, I)

―
Credits: Kreis et al, 2022. 24 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/


Training

For learning the parameters  of the reverse process, we can form a variational
lower bound on the log-likelihood of the data as

θ

E log p (x ) ≥ E log := Lq(x )0 [ θ 0 ] q(x )q(x ∣x )0 1:T 0 [
q(x ∣x )1:T 0

p (x )θ 0:T ]
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This objective can be rewritten as

where

 can be interpreted as a reconstruction term.
It can be approximated and optimized using a Monte Carlo estimate.

 is a denoising
matching term. The transition  provides a learning signal for
the reverse process, since it de�nes how to denoise the noisi�ed input 
with access to the original input .

 represents how close the distribution of the
�nal noisi�ed input is to the standard Gaussian. It has no trainable
parameters.

L = E logq(x )q(x ∣x )0 1:T 0 [
q(x ∣x )1:T 0

p (x )θ 0:T ]

= E L − L − Lq(x )0 [ 0
t>1

∑ t−1 T ]

L = E [log p (x ∣x )]0 q(x ∣x )1 0 θ 0 1

L = E KL(q(x ∣x ,x )∣∣p (x ∣x ))t−1 q(x ∣x )t 0 t−1 t 0 θ t−1 t

q(x ∣x ,x )t−1 t 0

xt

x0

L = KL(q(x ∣x )∣∣p (x ))T T 0 θ T
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The distribution  is the tractable posterior distribution

where

q(x ∣x ,x )t−1 t 0

q(x ∣x ,x )t−1 t 0 =
q(x ∣x )t 0

q(x ∣x ,x )q(x ∣x )t t−1 0 t−1 0

= N (x ;μ (x ,x , t), σ I)t−1 q t 0 t
2

μ (x ,x , t)q t 0

σt
2

= x + x
1 − ᾱt

(1 − )αt ᾱt−1
t 1 − ᾱt

(1 − α )ᾱt−1 t
0

=
1 − ᾱt

(1 − α )(1 − )t ᾱt−1

27 / 49



Interpretation 1: Denoising

To minimize the expected KL divergence , we need to match the reverse
process  to the tractable posterior. Since both are Gaussian, we can
match their means and variances.

By construction, the variance of the reverse process can be set to the known
variance  of the tractable posterior.

For the mean, we reuse the analytical form of  and parameterize
the mean of the reverse process using a denoising network as

Lt−1

p (x ∣x )θ t−1 t

σt
2

μ (x ,x , t)q t 0

μ (x , t) = x + (x , t).θ t 1 − ᾱt

(1 − )αt ᾱt−1
t 1 − ᾱt

(1 − α )ᾱt−1 t x̂θ t
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Under this parameterization, the minimization of expected KL divergence 
can be rewritten as

Optimizing a VDM amounts to learning a neural network that predicts the
original ground truth  from a noisy input .

Lt−1

=

=

arg E KL(q(x ∣x ,x )∣∣p (x ∣x ))
θ
min q(x ∣x )t 0 t−1 t 0 θ t−1 t

arg E ∣∣μ (x , t) − μ (x ,x , t)∣∣
θ
min q(x ∣x )t 0 2σt

2
1

θ t q t 0 2
2

arg E ∣∣ (x , t) − x ∣∣
θ
min q(x ∣x )t 0 2σt

2

1
(1 − )ᾱt

2

(1 − α )ᾱt−1 t
2

x̂θ t 0 2
2

x0 xt
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Finally, minimizing the summation of the  terms across all noise levels 
can be approximated by minimizing the expectation over all timesteps as

Lt−1 t

arg E E KL(q(x ∣x ,x )∣∣p (x ∣x )).
θ
min t∼U{2,T } q(x ∣x )t 0 t−1 t 0 θ t−1 t
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Interpretation 2: Noise prediction

A second interpretation of VDMs can be obtained using the reparameterization
trick. Using

we can rewrite the mean of the tractable posterior as

x = ,0
ᾱt

x − ϵt 1 − ᾱt

μ (x ,x , t)q t 0 = x + x
1 − ᾱt

(1 − )αt ᾱt−1
t 1 − ᾱt

(1 − α )ᾱt−1 t
0

= x +
1 − ᾱt

(1 − )αt ᾱt−1
t 1 − ᾱt

(1 − α )ᾱt−1 t

ᾱt

x − ϵt 1 − ᾱt

= ...

= x − ϵ
αt

1
t

(1 − )αᾱt t

1 − αt
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Accordingly, the mean of the reverse process can be parameterized with a
noise-prediction network as

Under this parameterization, the minimization of the expected KL divergence 
 can be rewritten as

Optimizing a VDM amounts to learning a neural network that predicts the
noise  that was added to the original ground truth  to obtain the noisy 

.

μ (x , t) = x − ϵ (x , t).θ t
αt

1
t

(1 − )αᾱt t

1 − αt
θ t

Lt−1

=

arg E KL(q(x ∣x ,x )∣∣p (x ∣x ))
θ
min q(x ∣x )t 0 t−1 t 0 θ t−1 t

arg E ∣∣ϵ ( , t) − ϵ∣∣
θ
min N (ϵ;0,I) 2σt

2

1
(1 − )αᾱt t

(1 − α )t 2
θ

xt

x + ϵᾱt 0 1 − ᾱt 2
2

ϵ x0
xt
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Algorithms
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Network architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-
attention layers to represent .ϵ (x , t)θ t

―
Credits: Kreis et al, 2022. 34 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/


Score-based generative models
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The score function

The score function  is a vector �eld that points in the direction of
the highest density of the data distribution .

It can be used to �nd modes of the data distribution or to generate samples by
Langevin dynamics.

∇ log q(x )x0 0

q(x )0

―
Credits: Song, 2021. 36 / 49

https://yang-song.net/blog/2021/score/


Interpretation 3: Denoising score matching

A third interpretation of VDMs can be obtained by reparameterizing  using
Tweedie's formula, as

which we can plug into the the mean of the tractable posterior to obtain

x0

x = ,0
ᾱt

x + (1 − )∇ log q(x ∣x )t ᾱt xt t 0

μ (x ,x , t)q t 0 = x + x
1 − ᾱt

(1 − )αt ᾱt−1
t 1 − ᾱt

(1 − α )ᾱt−1 t
0

= ...

= x + ∇ log q(x ∣x ).
αt

1
t

αt

1 − αt
xt t 0
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The mean of the reverse process can be parameterized with a score network as

Under this parameterization, the minimization of the expected KL divergence 
 can be rewritten as

Optimizing a score-based model amounts to learning a neural network that
predicts the score  of the tractable posterior.

μ (x , t) = x + s (x , t).θ t
αt

1
t

αt

1 − αt
θ t

Lt−1

=

arg E KL(q(x ∣x ,x )∣∣p (x ∣x ))
θ
min q(x ∣x )t 0 t−1 t 0 θ t−1 t

arg E ∣∣s (x , t) − ∇ log q(x ∣x )∣∣
θ
min q(x ∣x )t 0 2σt

2

1
αt

(1 − α )t 2
θ t xt t 0 2

2

∇ log q(x ∣x )xt t 0
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Since  is learned in expectation over the data distribution , the
score network will eventually approximate the score of the marginal distribution

), for each noise level , that is

s (x , t)θ t q(x )0

q(xt t

s (x , t) ≈ ∇ log q(x ).θ t xt t
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Ancestral sampling

Sampling from the score-based diffusion model is done by starting from 
 and then following the estimated reverse Markov

chain, as

where , for .

x ∼ p(x ) = N (0, I)T T

x = x + s (x , t) + σ z ,t−1
αt

1
t

αt

1 − αt
θ t t t

z ∼ N (0, I)t t = T , ..., 1
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Conditional sampling

To turn a diffusion model  into a conditional model, we can add
conditioning information  at each step of the reverse process, as

p (x )θ 0:T

y

p (x ∣y) = p(x ) p (x ∣x , y).θ 0:T T

t=1

∏
T

θ t−1 t

41 / 49



With a score-based model however, we can use the Bayes rule and notice that

where we leverage the fact that the gradient of  with respect to  is
zero.

In other words, controllable generation can be achieved by adding a
conditioning signal during sampling, without having to retrain the model. E.g.,
train an extra classi�er  and use it to control the sampling process by
adding its gradient to the score.

∇ log p(x ∣y) = ∇ log p(x ) + ∇ log p(y∣x ),xt t xt t xt t

log p(y) xt

p(y∣x )t
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Continuous-time diffusion models

With , we can rewrite the forward process asβ = 1 − αt t

xt = x + N (0, I)αt t−1 1 − αt

= x + N (0, I)1 − βt t−1 βt

= x + N (0, I)1 − β(t)Δt t−1 β(t)Δt

―
Credits: Kreis et al, 2022. 43 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/


In the limit of many small steps, i.e. as , we can further rewrite the
forward process as

This last update rule corresponds to the Euler-Maruyama discretization of the
stochastic differential equation (SDE)

describing the diffusion in the in�nitesimal limit.

Δ → 0t

.
xt = x + N (0, I)1 − β(t)Δt t−1 β(t)Δt

≈ x − x + N (0, I)t−1 2
β(t)Δt

t−1 β(t)Δt

dx = − β(t)x dt + dwt 2
1

t β(t) t
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―
Credits: Song, 2021. 45 / 49

https://yang-song.net/blog/2021/score/


The reverse process satis�es a reverse-time SDE that can be derived analytically
from the forward-time SDE and the score of the marginal distribution , asq(x )t

dx = − β(t)x − β(t)∇ log q(x ) dt + dw .t [
2
1

t xt t ] β(t) t

46 / 49



―
Credits: Song, 2021. 47 / 49

https://yang-song.net/blog/2021/score/


The score  of the marginal diffused density  is not tractable,
but can be estimated using denoising score matching (DSM) by solving

which will result in  because of the outer expectation
over .

This is just the same objective as for VDMs! (See Interpretation 3)

∇ log q(x )xt t q(x )t

arg E E E ∣∣s (x , t) − ∇ log q(x ∣x )∣∣ ,
θ
min q(x )0 t∼U [0,T ] q(x ∣x )t 0 θ t xt t 0 2

2

s (x , t) ≈ ∇ log q(x )θ t xt t

q(x )0
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Latent-space diffusion models

Directly modeling the data distribution can be make the denoising process
di�cult to learn. A more effective approach is to combine VAEs with a diffusion
prior.

The distribution of latent embeddings is simpler to model.

Diffusion on non-image data is possible with tailored autoencoders.

―
Credits: Vahdat et al, 2021. 49 / 49

https://nvlabs.github.io/LSGM/


The end.

―
Credits: Blattmann et al, 2023. Prompt: "A teddy bear is playing the electric guitar, high de�nition, 4k." 49 / 49

https://research.nvidia.com/labs/toronto-ai/VideoLDM/

