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Today
Learn a model of the data.

Auto-encoders

Variational inference

Variational auto-encoders
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Geoffrey Hinton, 2014.

"The brain has about  synapses and we only live for about  seconds. So we

have a lot more parameters than data. This motivates the idea that we must do a

lot of unsupervised learning since the perceptual input (including proprioception) is

the only place we can get  dimensions of constraint per second."
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Yann LeCun, 2016.

"We need tremendous amount of information to build machines that have common

sense and generalize."
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Deep unsupervised learning

Deep unsupervised learning is about learning a model of the data, explicitly or

implicitly, without requiring labels.

Generative models: recreate the raw data distribution (e.g., the distribution

of natural images).

Self-supervised learning: solve puzzle tasks that require semantic

understanding (e.g., predict a missing word in a sequence).
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Generative models

A (deep) generative model is a probabilistic model  that can be used as a

simulator of the data.

Formally, a generative model de�nes a probability distribution  over the

data , where the parameters  are learned to match the (unknown) data

distribution .

pθ

p (x)θ

x ∈ X θ

p(x)
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Variational auto-encoders

(Kingma and Welling, 2013)

Diffusion models

(Midjourney, 2023)
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https://cvpr2022-tutorial-diffusion-models.github.io/
https://smsharma.io/iaifi-summer-school-2023/


Produce samples Evaluate densities Encode complex priors

What can we do with generative models?

x ∼ p(x∣θ) p(x∣θ)

p(θ∣x) =
p(x)

p(x∣θ)p(θ)

p(x)

―
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Auto-encoders
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Auto-encoders
An auto-encoder is a composite function made of

an encoder  from the original space  to a latent space ,

a decoder  to map back to ,

such that  is close to the identity on the data.

f X Z

g X

g ∘ f
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Let  be the data distribution over . A good auto-encoder could be

characterized with the reconstruction loss

Given two parameterized mappings  and , training consists of

minimizing an empirical estimate of that loss,

p(x) X

E ∣∣x − g ∘ f (x)∣∣ ≈ 0.x∼p(x) [ 2]

f (⋅; θ )f g(⋅; θ )g

θ , θ = arg ∣∣x − g(f (x , θ ), θ )∣∣ .f g
θ ,θf g

min
N

1

i=1

∑
N

i i f g
2

―
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For example, when the auto-encoder is linear,

with , the reconstruction error reduces to

In this case, an optimal solution is given by PCA.

f : z
g : x̂

= U xT

= Uz,

U ∈ Rp×d

E ∣∣x −UU x∣∣ .x∼p(x) [ T 2]
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Deep auto-encoders

     

Better results can be achieved with more sophisticated classes of mappings

than linear projections: use deep neural networks for  and .

For instance,

by combining a multi-layer perceptron encoder  with a multi-

layer perceptron decoder .

by combining a convolutional network encoder  with a

decoder  composed of the reciprocal transposed

convolutional layers.

f g

f : R → Rp d

g : R → Rd p

f : R → Rw×h×c d

g : R → Rd w×h×c
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Interpolation

To get an intuition of the learned latent representation, we can pick two

samples  and  at random and interpolate samples along the line in the latent

space.

x x′
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Denoising auto-encoders
Besides dimension reduction, auto-encoders can capture dependencies

between signal components to restore degraded or noisy signals. In this case,

the composition

is a denoising auto-encoder.

The goal is to optimize  such that a perturbation  of the signal  is restored

to , hence

h = g ∘ f : X → X

h x~ x
x

h( ) ≈ x.x~
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A fundamental weakness of denoising auto-encoders is that the posterior 

 is possibly multi-modal.

If we train an auto-encoder with the quadratic loss (i.e., implicitly assuming a

Gaussian likelihood), then the best reconstruction is

which may be very unlikely under .

p(x∣ )x~

h( ) = E[x∣ ],x~ x~

p(x∣ )x~

―
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Sampling from an AE's latent space
The generative capability of the decoder  in an auto-encoder can be assessed

by introducing a (simple) density model  over the latent space , sample there,

and map the samples into the data space  with .

g

q Z
X g

―
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For instance, a factored Gaussian model with diagonal covariance matrix,

where both  and  are estimated on training data.

q(z) = N ( , ),μ̂ Σ̂

μ̂ Σ̂
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These results are not satisfactory because the density model on the latent

space is too simple and inadequate.

Building a good model in latent space amounts to our original problem of

modeling an empirical distribution, although it may now be in a lower

dimension space.

―
Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 30 / 58
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Variational inference
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Latent variable model

Consider for now a prescribed latent variable model that relates a set of

observable variables  to a set of unobserved variables .

The probabilistic model de�nes a joint probability distribution , which

decomposes as

x ∈ X z ∈ Z

p (x, z)θ

p (x, z) = p (x∣z)p(z).θ θ
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0:00 / 0:45
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How to �t a latent variable model?

θ∗ = arg p (x)
θ
max θ

= arg p (x∣z)p(z)dz
θ
max ∫ θ

= arg E p (x∣z) dz
θ
max p(z) [ θ ]

≈ arg p (x∣z )
θ
max

N

1

i=1

∑
N

θ i
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How to �t a latent variable model?

The curse of dimensionality will lead to poor estimates of the expectation.

θ∗ = arg p (x)
θ
max θ

= arg p (x∣z)p(z)dz
θ
max ∫ θ

= arg E p (x∣z) dz
θ
max p(z) [ θ ]

≈ arg p (x∣z )
θ
max

N

1

i=1

∑
N

θ i
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Variational inference

Let us instead consider a variational approach to �t the model parameters .

Using a variational distribution  over the latent variables , we have

θ

q (z)ϕ z

log p (x)θ = logE p (x∣z)p(z) [ θ ]

= logEq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ ]

≥ E log (ELBO(x; θ, ϕ))q (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ ]

= E log p (x∣z) − KL(q (z)∣∣p(z))q (z)ϕ
[ θ ] ϕ
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Using the Bayes rule, we can also write

Therefore, .

ELBO(x; θ, ϕ) = E logq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ ]

= E logq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ

p (x)θ

p (x)θ ]

= E log p (x)q (z)ϕ
[

q (z)ϕ

p (z∣x)θ
θ ]

= log p (x) − KL(q (z)∣∣p (z∣x)).θ ϕ θ

log p (x) = ELBO(x; θ, ϕ) + KL(q (z)∣∣p (z∣x))θ ϕ θ
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Provided the KL gap remains small, the model parameters can now be

optimized by maximizing the ELBO,

θ , ϕ = arg ELBO(x; θ, ϕ).∗ ∗

θ,ϕ
max
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Optimization

We can proceed by gradient ascent, provided we can evaluate 

 and .

In general, the gradient of the ELBO is intractable to compute, but we can

estimate it with Monte Carlo integration.

θ , ϕ∗ ∗ = arg ELBO(x; θ, ϕ).
θ,ϕ
max

∇ ELBO(x; θ, ϕ)θ ∇ ELBO(x; θ, ϕ)ϕ
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Variational auto-encoders
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So far we assumed a prescribed probabilistic model motivated by domain

knowledge. We will now directly learn a stochastic generating process 

with a neural network.

We will also amortize the inference process by learning a second neural

network  approximating the posterior, conditionally on the observed

data .

p (x∣z)θ

q (z∣x)ϕ

x
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Variational auto-encoders
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A variational auto-encoder is a deep latent variable model where:

The prior  is prescribed, and usually chosen to be Gaussian.

The likelihood  is parameterized with a generative network  (or

decoder) that takes as input  and outputs parameters  to the

data distribution. E.g.,

The approximate posterior  is parameterized with an inference

network  (or encoder) that takes as input  and outputs parameters 

 to the approximate posterior. E.g.,

p(z)

p (x∣z)θ NNθ

z φ = NN (z)θ

μ, σ

p (x∣z)θ

= NN (z)θ

= N (x;μ, σ I)2

q (z∣x)ϕ

NNϕ x
ν = NN (x)ϕ

μ, σ

q (z∣x)ϕ

= NN (x)ϕ

= N (z;μ, σ I)2
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As before, we can use variational inference to jointly optimize the encoder and

decoder networks parameters  and , but now in expectation over the data

distribution :

Interpretation:

Given some decoder network set at , we want to put the mass of the latent

variables, by adjusting , such that they explain the observed data, while

remaining close to the prior.

Given some encoder network set at , we want to put the mass of the

observed variables, by adjusting , such that they are well explained by the

latent variables.

ϕ θ

p(x)

θ , ϕ∗ ∗ = arg E ELBO(x; θ, ϕ)
θ,ϕ
max p(x) [ ]

= arg E E [log ]
θ,ϕ
max p(x) [ q (z∣x)ϕ q (z∣x)ϕ

p (x∣z)p(z)θ ]

= arg E E log p (x∣z) − KL(q (z∣x)∣∣p(z)) .
θ,ϕ
max p(x) [ q (z∣x)ϕ

[ θ ] ϕ ]

θ

ϕ

ϕ

θ
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Unbiased gradients of the ELBO with respect to the generative model

parameters  are simple to obtain, as

which can be estimated with Monte Carlo integration.

However, gradients with respect to the inference model parameters  are more

di�cult to obtain since

θ

∇ ELBO(x; θ, ϕ)θ = ∇ E log p (x, z) − log q (z∣x)θ q (z∣x)ϕ
[ θ ϕ ]

= E ∇ (log p (x, z) − log q (z∣x))q (z∣x)ϕ
[ θ θ ϕ ]

= E ∇ log p (x, z)q (z∣x)ϕ
[ θ θ ]

= E ∇ log p (x∣z) ,q (z∣x)ϕ
[ θ θ ]

ϕ

∇ ELBO(x; θ, ϕ)ϕ = ∇ E log p (x, z) − log q (z∣x)ϕ q (z∣x)ϕ
[ θ ϕ ]

≠ E ∇ (log p (x, z) − log q (z∣x)) .q (z∣x)ϕ
[ ϕ θ ϕ ]
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Reparameterization trick

Let us abbreviate

The computational graph of a Monte Carlo estimate of the ELBO would look like

Issue: We cannot backpropagate through the stochastic node  to compute 

!

ELBO(x; θ, ϕ) = E log p (x, z) − log q (z∣x)q (z∣x)ϕ
[ θ ϕ ]

= E f (x, z; ϕ) .q (z∣x)ϕ
[ ]

z
∇ fϕ 43 / 58



The reparameterization trick consists in re-expressing the variable

as some differentiable and invertible transformation of another random variable

 given  and ,

such that the distribution of  is independent of  or .

z ∼ q (z∣x)ϕ

ϵ x ϕ

z = g(ϕ,x, ϵ),

ϵ x ϕ
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If , where  and  are the

outputs of the inference network , then a common reparameterization is

q (z∣x) = N (z;μ(x; ϕ), σ (x; ϕ))ϕ
2 μ(x; ϕ) σ (x; ϕ)2

NNϕ

p(ϵ)

z
= N (ϵ; 0, I)
= μ(x; ϕ) + σ(x; ϕ) ⊙ ϵ.
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Given this change of variable, the ELBO can be rewritten as

Therefore estimating the gradient of the ELBO with respect to  is now easy, as

which we can now estimate with Monte Carlo integration.

The last required ingredient is the evaluation of the approximate posterior 

 given the change of variable . As long as  is invertible, we have

ELBO(x; θ, ϕ) = E f (x, z; ϕ)q (z∣x)ϕ
[ ]

= E f (x, g(ϕ,x, ϵ); ϕ) .p(ϵ) [ ]

ϕ

∇ ELBO(x; θ, ϕ)ϕ = ∇ E f (x, g(ϕ,x, ϵ); ϕ)ϕ p(ϵ) [ ]

= E ∇ f (x, g(ϕ,x, ϵ); ϕ) ,p(ϵ) [ ϕ ]

q (z∣x)ϕ g g

log q (z∣x) = log p(ϵ) − log det .ϕ
∣
∣
∣
∣

(
∂ϵ
∂z

)
∣
∣
∣
∣
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(demo)
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Step-by-step example

Consider as data  the MNIST digit dataset:d
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Decoder :p (x∣z)θ

z
p(z)

p (x∣z)θ

μ(z; θ)

log σ (z; θ)2

h
θ

∈ Rd

= N (z; 0, I)
= N (x;μ(z; θ), σ (z; θ)I)2

=W h+ b2
T

2

=W h+ b3
T

3

= ReLU(W z+ b )1
T

1

= {W ,b ,W ,b ,W ,b }1 1 2 2 3 3
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Encoder :

Note that there is no restriction on the encoder and decoder network

architectures. They could as well be arbitrarily complex convolutional networks.

q (z∣x)ϕ

q (z∣x)ϕ

p(ϵ)

z

μ(x; ϕ)

log σ (x; ϕ)2

h
ϕ

= N (z;μ(x; ϕ), σ (x; ϕ)I)2

= N (ϵ; 0, I)
= μ(x; ϕ) + σ(x; ϕ) ⊙ ϵ

=W h+ b5
T

5

=W h+ b6
T

6

= ReLU(W x + b )4
T

4

= {W ,b ,W ,b ,W ,b }4 4 5 5 6 6
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Plugging everything together, the objective can be expressed as

where the negative KL divergence can be expressed analytically as

which allows to evaluate its derivative without approximation.

ELBO(x; θ, ϕ) = E log p (x∣z) − KL(q (z∣x)∣∣p(z))q (z∣x)ϕ
[ θ ] ϕ

= E log p(x∣z = g(ϕ,x, ϵ); θ) − KL(q (z∣x)∣∣p(z)),p(ϵ) [ ] ϕ

−KL(q (z∣x)∣∣p(z)) = 1 + log(σ (x; ϕ)) − μ (x; ϕ) − σ (x; ϕ) ,ϕ 2
1

j=1

∑
d

( j
2

j
2

j
2 )
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A semantically meaningful latent space

The prior-matching term  enforces simplicity in the latent

space, encouraging learned semantic structure and disentanglement.

KL(q (z∣x)∣∣p(z))ϕ

―
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Some selected applications

Hierarchical compression of images and other data,

e.g., in video conferencing systems (Gregor et al, 2016).
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Voice style transfer [demo] (van den Oord et al, 2017).
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https://avdnoord.github.io/homepage/vqvae/


Design of new molecules with desired chemical properties

(Gomez-Bombarelli et al, 2016).

58 / 58



The end.
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