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‘Every time a scientific paper presents a bit of data, its accompanied by an error
bar — a quiet but insistent reminder that no knowledge is complete or perfect. Its a
calibration of how much we trust what we think we know."

Carl Sagan

3/57



Today

How to estimate uncertainty with and in neural networks?

e Uncertainty
e Aleatoric uncertainty

e Epistemic uncertainty



Uncertainty



Uncertainty refers to situations where there is imperfect or unknown
information. It can arise in predictions of future events, in physical
measurements, or in situations where information is unknown.

Accounting for uncertainty is necessary for making optimal decisions. Not
accounting for uncertainty can lead to suboptimal, wrong, or even catastrophic
decisions.
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Case 1. First assisted driving fatality in May 2016: Perception system mistook

trailer's white side for bright sky.

Trailer turns left
in front of the Tesla

Tesla doesn't stop,
hitting the trailer and
traveling under it

9 ®

Tesla veers off road
and strikes two fences
and a power pole

o
)

Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?,2017.

7/57


https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

thls3 5M private jet
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Skyscrapers Airplanes

Graduation

Case 2. An image classification system erroneously identifies two African
Americans as gorillas, raising concerns of racial discrimination.

Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?,2017. 9/57


https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

The systems that made these errors were likely confident in their
predictions. They did not account for uncertainty.
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Aleatoric uncertainty
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Aleatoric uncertainty refers to the uncertainty arising from the inherent

stochasticity of the true data generating process. This uncertainty cannot be
reduced with more data.

A common example is observational noise due to the limitations of the
measurement devices. Collecting more data will not reduce the noise.

12/57
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Assumptions about the data generating process can help in distinguishing
between different types of aleatoric uncertainty:

e Homoscedastic uncertainty, which is constant across the input space.

e Heteroscedastic uncertainty, which varies across the input space.

Homoscedastic
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Neural density estimation

Consider training data (x, y) ~ p(x, y), with

e X € RP

e yc R

We do not wish to learn a function § = f(x), which would only produce point
estimates.

Instead we want to learn the full conditional density

p(y[x).
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NN with Gaussian output layer

We can model aleatoric uncertainty in the output by modelling the conditional
distribution as a Gaussian distribution,

p(y|x) = N (y; p(x), o* (x)),

where u(z) and 0% (x) are parametric functions to be learned, such as neural
networks.

Note: The Gaussian distribution is a modelling choice. Other parametric
distributions can be used.

15/57



NN N

|

Case 1: Homoscedastic aleatoric uncertainty
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We have,

arg max p(d|6, o)

0,02
=argmax || p(vix;,6,0%)
h x;,y;€d
1 (yi — H(Xi))2)
= arg max H exp (— >
6,02 cned \Voro 20
2
J— x.
= arg min (i ,ug i) +log(o) + C
0,02 o ped 20

What if o2 was fixed?
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Case 2: Heteroscedastic aleatoric uncertainty



Same as for the homoscedastic case, except that that o2 is now a function of x;

arg max p(d|0)

- x:. 0
arg max H p(y;|x;, 0)

x;,yi€d

(yi — M(Xi))2
—em 11 o ™ ()
(yi — p(xi))?

; st +loa(ox)) +C

What is the purpose of 20 (x; )? What about log (o (x;))?
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Modelling p(y|x) as a unimodal (Gaussian) distribution can be inadequate
since the conditional distribution may be multimodal.

20/57
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Gaussian mixture model

A Gaussian mixture model (GMM) defines instead p(y|x) as a mixture of K
Gaussian components,

p(y[x) = Zﬂk/\/ Y; iy 0% ),

where 0 < 7, < 1 forall k and Zle e = 1.




A mixture density network (MDN) is a neural network implementation of the
Gaussian mixture model.
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lllustration
Let us consider training data generated randomly as
¥, =x; +0.3 Sin(47rxi) + €
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The data can be fit with a 2-layer network producing point estimates for y
(demo).

Credits: David Ha, Mixture Density Networks, 2015. 24 /57


http://otoro.net/ml/mixture/index.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/

If we flip x; and y;, the network faces issues since for each input, there are
multiple outputs that can work. It produces an average of the correct values
(demo).

Credits: David Ha, Mixture Density Networks, 2015. 25/57


http://otoro.net/ml/mixture/inverse.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/
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A mixture density network models the data correctly, as it predicts for each
input a distribution for the output, rather than a point estimate (demo).

Credits: David Ha, Mixture Density Networks, 2015. 26/57


http://otoro.net/ml/mixture/mixture.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/

Normalizing flows

Gaussian mixture models are a flexible way to model multimodal distributions,
but they are limited by the number of components K.

In practice, K must be large to model complex distributions, which makes
inference difficult.

Normalizing flows are a more flexible way to model complex distributions.
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Change of variables

Assume p(z) is a uniformly distributed unit cube in R® and x = f(z) = 2z.
Since the total probability mass must be conserved,

V. 1
p(x) = p(x = f(2)) = p(z) 7= = p(z)3,
Vi 8
2 0 0\|"
Where% =|det {0 2 O represents the inverse determinant of the
0 0 2

linear transformation f.



What if f is non-linear?

v = f[z, 9]

Model density
x

: 0,0
05 0.0

0.5
- 3.0

z
Base density

Figure 16.2 Transforming distributions. The base density (cyan, bottom) passes
through a function (blue curve, top right) to create the model density (orange,
left). Consider dividing the base density into equal intervals (gray vertical lines).
The probability mass between adjacent lines must remain the same after transfor-
mation. The cyan-shaded region passes through a part of the function where the
gradient is larger than one, so this region is stretched. Consequently, the height
of the orange-shaded region must be lower so that it retains the same area as the
cyan-shaded region. In other places (e.g., z = —2), the gradient is less than one,
and the model density increases relative to the base density.

Image credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 29/57


https://udlbook.github.io/udlbook/

Change of variables theorem
If fis non-linear,

« the Jacobian J¢(z) of x = f(z) represents the infinitesimal linear
transformation in the neighborhood of z;

 if the function is a bijective map, then the mass must be conserved locally.

Therefore, the local change of density yields

p(x = £(z)) = p(2) |det J;(z)| .

Similarly, for g = £, we have

p(x) = p(z = g(x)) |det Jy(x)| -

30/5



Example: coupling layers
Assume z = (2zq,2p) and x = (X4, Xp). Then,
« Forward mapping x = f(z):
X = Zg, Xp = Zp © exp(s(za)) + t(2a),
e Inverse mapping z = g(x):
Zo = Xa, Zb = (Xp — t(Xa)) © exp(—s(xa)),

where s and t are arbitrary neural networks.
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Forx = (xq, X3), the log-likelihood is

log p(x) = log p(z) |det Jf(z)]_1

:6_X

5, 5@ lower triangular matrix

where the Jacobian J(z)

(22‘3 diag(exg<s<za>>>)’

such that |[det J¢(z)| = ][, exp(s(zqc)): = exp(D; 5(2Za)i).

Therefore, the log-likelihood is

log p(x) = logp(z) — » _ s(2);

1
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Normalizing flows

A normalizing flow is a change of variable f that transforms a base distribution
p(z) into p(x) through a discrete sequence of invertible transformations.

Inverse mapping

. fl—l[‘agbl] f2_1[.7¢2] fgl[.7¢3] .
Base density Model density

file, ¢4 fale, @o] fse, @3]

Forward mapping

Image credits: Simon J.D. Prince, Understanding Deep Learning, 2023.


https://udlbook.github.io/udlbook/

Formally,

zy ~ p(z)
Z, — fk:(zk—l)) kt = ]., ,K

X =2 = fg 0...0 f1(zo)-

The change of variable theorem yields

K
log p(x) = log p(z¢) — Z log |det J, (zx—1)] -
k=1
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Data
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Normalizing flows can fit complex multimodal discontinuous densities

p(x; 0)

Image credits: Wehenkel and Louppe, 2019


https://arxiv.org/abs/1908.05164

Conditional normalizing flows

Normalizing flows can also estimate densities p(x|c) conditioned on a context ¢

e Transformations are made conditional by taking ¢ as an additional input.

For example, in a coupling layer, the networks can be upgraded to s(z, c)
and t(z, c).

» Optionally, the base distribution p(z) can also be made conditional on c.
(Accordingly, aleatoric uncertainty of some output y conditioned on an input x

can be modelled by a conditional normalizing flow p(y|x) where the context cis
the input x.)



(a) Low resolution (b) Ground truth (¢) Baseline mode

Figure 2: Super resolution results on the Imagenet64 test data. Samples are taken from the CNF
ZThr ~ p(The|Ty-) and the mode is visualized for the factorized baseline model. Best viewed elec-
tronically.

Image credits: Winkleretal, 2019. 37/57


https://arxiv.org/abs/1912.00042

Continuous-time normalizing flows

Replace the discrete sequence of
transformations with a neural ODE
with reversible dynamics such that

plz(t))

zo ~ p(z)
dZ( ) \
* = flalt), A

— —zO+/f

The instantaneous change of variable yields

0f(z(t),t,0)

log () = log p(a(0)) — | T (PG ) ot

Image credits: Grathwohl et al, 2018. 38/57


https://arxiv.org/abs/1810.01367

Epistemic uncertainty



Epistemic uncertainty accounts for uncertainty in the model or in its
parameters. It captures our ignorance about which model can best explain the
collected data. It can be explained away given enough data.

Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?,2017.
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https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

Bayesian neural networks

To capture epistemic uncertainty in a neural network, we model our ignorance
with a prior distribution p(w) over its weights and estimate the posterior
distribution p(w|d) given the training set d.
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The prior predictive distribution at x is given by integrating over all possible
weight configurations,

p(ylx) = / p(y]x, w)p(w)dw.

Given training datad = {(x1,v1), .-, (X, yn )} @ Bayesian update results in
the posterior

p(d|w)p(w)
p(d)

where the likelihood p(d|w) = [, p(yi|x:, w).

p(wld) =

The posterior predictive distribution is then given by

p(ylx,d) = / p(y|x, w)p(w|d)dw.

42 /57



Bayesian neural networks are easy to formulate, but notoriously difficult to
perform inference in.

p(d) is intractable to evaluate, which results in the posterior p(w|d) not being
tractable either.

Therefore, we must rely on approximations.
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Variational inference

Variational inference can be used for building an approximation g(w; v) of the
posterior p(w|d).

We can show that minimizing

KL(g(w;v)|p(w|d))

with respect to the variational parameters v, is identical to maximizing the
evidence lower bound objective (ELBO)

ELBO(v) = Eq(uy) [log p(d]w)] — KL(q(w; v)|[p(w)).

44757



The integral in the ELBO is not tractable for almost all g, but it can be maximized
with stochastic gradient ascent:

1. Sample @ ~ q(w; V).
2. Do one step of maximization with respect to v on

L(v) = log p(d|&) ~ log qﬁﬁf

In the context of Bayesian neural networks, this procedure is also known as
Bayes by backprop (Blundell et al, 2015).
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Dropout

Dropout is an empirical technique that was first proposed to avoid overfitting in
neural networks.

At each training step:

e Remove each node in the network with a probability p.

« Update the weights of the remaining nodes with backpropagation.
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(a) Standard Neural Net



At test time, either:

e Make predictions using the trained network without dropout but rescaling
the weights by the dropout probability p (fast and standard).

e Sample T neural networks using dropout and average their predictions
(slower but better principled).
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Why does dropout work?
e It makes the learned weights of a node less sensitive to the weights of the
other nodes.

e This forces the network to learn several independent representations of the
patterns and thus decreases overfitting.

e |t approximates Bayesian model averaging.

49/57
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Dropout does variational inference

What variational family ¢ would correspond to dropout?

o Let us split the weights w per layer,w = {W{,..., W}, where W, is
further split per unit W; = {w; 1, ..., W; 4, }.

» Variational parameters v are split similarly into v = {IMy, ..., M }, with
Mi = {mi’l, ey mi’qi}.

« Then, the proposed g(w; v) is defined as follows:

q(w;v) = [ [ a(Wis M)

i=1
Wz,M quzkzymzk:
q(w Wi iy 1N zk) — P50( zk) + (1 — P)5mi,k (Wzkz)

where d, () denotes a (multivariate) Dirac distribution centered at a.
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Given the previous definition for ¢, sampling parameters w = {Wl, ey WL}
is done as follows:

e Draw binary z; ; ~ Bernoulli(1 — p) for each layer ¢ and unit k.

« Compute W, = M, diag([z; )7} ), where M; denotes a matrix
composed of the columns m; ;..

That is, WZ are obtained by setting columns
of IVI; to zero with probability p.

This is strictly equivalent to dropout, i.e.
removing units from the network with
probability p.
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Therefore, one step of stochastic gradient descent on the ELBO becomes:

1. Sample @ ~ q(w;v) < Randomly set units of the network to zero <
Dropout.

2. Do one step of maximization with respect to v = {IM, } on

A

L(v) = logp(d|@) — KL(g(w; v)||p(w)).

52/57



Maximizing i}(y) is equivalent to minimizing
—L(v) = —logp(d|@) + KL(q(w; v)|[p(w))

This is also equivalent to one minimization step of a standard classification or
regression objective:

e The first term is the typical objective (such as the cross-entropy).

« The second term forces g to remain close to the prior p(w).
o |fp(w) is Gaussian, minimizing the KL is equivalent to KQ regularization.

o |fp(w) is Laplacian, minimizing the KL is equivalent to fl regularization.
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Conversely, this shows that when training a network with dropout with a
standard classification or regression objective, one is actually implicitly doing
variational inference to match the posterior distribution of the weights.
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Uncertainty estimates from dropout

Proper uncertainty estimates at x, accounting for both the aleatoric and
epistemic uncertainties, can be obtained in a principled way using Monte-Carlo
integration:

« Draw T sets of network parameters w; from g(w; ).
« Compute the predictions for the T' networks, { f (x; &;) } ;.

e Approximate the predictive mean and variance as

T
1 .
Ep(yxa) Y] = T Z f(x; @)
t=1
1 T
. 512
Vatixa) [¥] = 0 + = > flx@n)® —Efy)°,
t=1

where o2 is the assumed level of noise in the observational model.
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(demo)
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https://www.cs.ox.ac.uk/people/yarin.gal/website/blog_2248.html

Pixel-wise depth regression

Figure 6: Qualitative results on the Make3D depth regression dataset. Left to right: input image, ground
truth, depth prediction, aleatoric uncertainty, epistemic uncertainty. Make3D does not provide labels for depth
greater than 70m, therefore these distances dominate the epistemic uncertainty signal. Aleatoric uncertainty is
prevalent around depth edges or distant points.

Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?,2017.


https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

The end.
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