
Deep Learning
Lecture 10: Uncertainty

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 57

mailto:g.louppe@uliege.be

2 / 57

Carl Sagan

"Every time a scienti�c paper presents a bit of data, it's accompanied by an error
bar – a quiet but insistent reminder that no knowledge is complete or perfect. It's a
calibration of how much we trust what we think we know."

3 / 57

Today
How to estimate uncertainty with and in neural networks?

Uncertainty

Aleatoric uncertainty

Epistemic uncertainty

4 / 57

Uncertainty

5 / 57

Uncertainty refers to situations where there is imperfect or unknown
information. It can arise in predictions of future events, in physical
measurements, or in situations where information is unknown.

Accounting for uncertainty is necessary for making optimal decisions. Not
accounting for uncertainty can lead to suboptimal, wrong, or even catastrophic
decisions.

6 / 57

Case 1. First assisted driving fatality in May 2016: Perception system mistook
trailer's white side for bright sky.

―
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 7 / 57

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

8 / 57

Case 2. An image classi�cation system erroneously identi�es two African
Americans as gorillas, raising concerns of racial discrimination.

―
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 9 / 57

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

The systems that made these errors were likely con�dent in their
predictions. They did not account for uncertainty.

10 / 57

Aleatoric uncertainty

11 / 57

Aleatoric uncertainty refers to the uncertainty arising from the inherent
stochasticity of the true data generating process. This uncertainty cannot be
reduced with more data.

A common example is observational noise due to the limitations of the
measurement devices. Collecting more data will not reduce the noise.

12 / 57

Assumptions about the data generating process can help in distinguishing
between different types of aleatoric uncertainty:

Homoscedastic uncertainty, which is constant across the input space.

Heteroscedastic uncertainty, which varies across the input space.

13 / 57

Neural density estimation
Consider training data , with

,

.

We do not wish to learn a function , which would only produce point
estimates.

Instead we want to learn the full conditional density

(x, y) ∼ p(x, y)

x ∈ Rp

y ∈ R

= f (x)ŷ

p(y∣x).

14 / 57

NN with Gaussian output layer

We can model aleatoric uncertainty in the output by modelling the conditional
distribution as a Gaussian distribution,

where and are parametric functions to be learned, such as neural
networks.

Note: The Gaussian distribution is a modelling choice. Other parametric
distributions can be used.

p(y∣x) = N (y;μ(x), σ (x)),2

μ(x) σ (x)2

15 / 57

NN

Case 1: Homoscedastic aleatoric uncertainty

16 / 57

We have,

What if was �xed?

arg p(d∣θ, σ)
θ,σ2
max 2

= arg p(y ∣x , θ, σ)
θ,σ2
max

x ,y ∈di i

∏ i i
2

= arg exp −
θ,σ2
max

x ,y ∈di i

∏
σ2π

1
(

2σ2
(y − μ(x))i i

2

)

= arg + log(σ) + C
θ,σ2
min

x ,y ∈di i

∑
2σ2

(y − μ(x))i i
2

σ2

17 / 57

NN

Case 2: Heteroscedastic aleatoric uncertainty

18 / 57

Same as for the homoscedastic case, except that that is now a function of
:

What is the purpose of ? What about ?

σ2 xi

arg p(d∣θ)
θ
max

= arg p(y ∣x , θ)
θ
max

x ,y ∈di i

∏ i i

= arg exp −
θ
max

x ,y ∈di i

∏
σ(x)2π i

1
(

2σ (x)2
i

(y − μ(x))i i
2

)

= arg + log(σ(x)) + C
θ
min

x ,y ∈di i

∑
2σ (x)2

i

(y − μ(x))i i
2

i

2σ (x)2
i log(σ(x))i

19 / 57

Modelling as a unimodal (Gaussian) distribution can be inadequate
since the conditional distribution may be multimodal.

p(y∣x)

20 / 57

Gaussian mixture model

A Gaussian mixture model (GMM) de�nes instead as a mixture of
Gaussian components,

where for all and .

p(y∣x) K

p(y∣x) = π N (y;μ , σ),
k=1

∑
K

k k k
2

0 ≤ π ≤ 1k k π = 1∑k=1
K

k

21 / 57

A mixture density network (MDN) is a neural network implementation of the
Gaussian mixture model.

NN

22 / 57

Illustration

Let us consider training data generated randomly as

with .

y = x + 0.3 sin(4πx) + ϵi i i i

ϵ ∼ Ni

23 / 57

The data can be �t with a 2-layer network producing point estimates for
(demo).

y

―
Credits: David Ha, Mixture Density Networks, 2015. 24 / 57

http://otoro.net/ml/mixture/index.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/

If we �ip and , the network faces issues since for each input, there are
multiple outputs that can work. It produces an average of the correct values

(demo).

xi yi

―
Credits: David Ha, Mixture Density Networks, 2015. 25 / 57

http://otoro.net/ml/mixture/inverse.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/

A mixture density network models the data correctly, as it predicts for each
input a distribution for the output, rather than a point estimate (demo).

―
Credits: David Ha, Mixture Density Networks, 2015. 26 / 57

http://otoro.net/ml/mixture/mixture.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/

Normalizing �ows
Gaussian mixture models are a �exible way to model multimodal distributions,
but they are limited by the number of components .

In practice, must be large to model complex distributions, which makes
inference di�cult.

Normalizing �ows are a more �exible way to model complex distributions.

K

K

27 / 57

Change of variables

Assume is a uniformly distributed unit cube in and .
Since the total probability mass must be conserved,

where represents the inverse determinant of the

linear transformation .

p(z) R3 x = f (z) = 2z

p(x) = p(x = f (z)) = p(z) = p(z) ,
Vx

Vz

8
1

= det8
1

∣
∣
∣
∣
∣
∣

⎝

⎛2
0
0

0
2
0

0
0
2⎠

⎞

∣
∣
∣
∣
∣
∣−1

f

28 / 57

What if is non-linear?f

―
Image credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 29 / 57

https://udlbook.github.io/udlbook/

Change of variables theorem

If is non-linear,

the Jacobian of represents the in�nitesimal linear
transformation in the neighborhood of ;

if the function is a bijective map, then the mass must be conserved locally.

Therefore, the local change of density yields

Similarly, for , we have

f

J (z)f x = f (z)
z

p(x = f (z)) = p(z) detJ (z) .∣ f ∣−1

g = f−1

p(x) = p(z = g(x)) detJ (x) .∣ g ∣

30 / 57

Example: coupling layers

Assume and . Then,

Forward mapping :

Inverse mapping :

where and are arbitrary neural networks.

z = (z , z)a b x = (x ,x)a b

x = f (z)

x = z , x = z ⊙ exp(s(z)) + t(z),a a b b a a

z = g(x)

z = x , z = (x − t(x)) ⊙ exp(−s(x)),a a b b a a

s t

31 / 57

For , the log-likelihood is

where the Jacobian is a lower triangular matrix

such that .

Therefore, the log-likelihood is

x = (x ,x)a b

log p(x) = log p(z) detJ (z)∣ f ∣−1

J (z) =f ∂z
∂x

,(
I

∂za

∂xb

0
diag(exp(s(z)))a

)

detJ (z) = exp(s(z)) = exp(s(z))∣ f ∣ ∏i a i ∑i a i

log p(x) = log p(z) − s(z)
i

∑ a i

32 / 57

Normalizing �ows

A normalizing �ow is a change of variable that transforms a base distribution
 into through a discrete sequence of invertible transformations.

f

p(z) p(x)

―
Image credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 33 / 57

https://udlbook.github.io/udlbook/

Formally,

The change of variable theorem yields

z ∼ p(z)0

z = f (z), k = 1, ...,Kk k k−1

x = z = f ∘ ... ∘ f (z).K K 1 0

log p(x) = log p(z) − log detJ (z) .0

k=1

∑
K

∣ fk k−1 ∣

34 / 57

Normalizing �ows can �t complex multimodal discontinuous densities.

―
Image credits: Wehenkel and Louppe, 2019. 35 / 57

https://arxiv.org/abs/1908.05164

Conditional normalizing �ows

Normalizing �ows can also estimate densities conditioned on a context
.

Transformations are made conditional by taking as an additional input.
For example, in a coupling layer, the networks can be upgraded to
and .

Optionally, the base distribution can also be made conditional on .

(Accordingly, aleatoric uncertainty of some output conditioned on an input
can be modelled by a conditional normalizing �ow where the context is
the input .)

p(x∣c) c

c

s(z, c)
t(z, c)

p(z) c

y x
p(y∣x) c

x

36 / 57

―
Image credits: Winkler et al, 2019. 37 / 57

https://arxiv.org/abs/1912.00042

Replace the discrete sequence of
transformations with a neural ODE
with reversible dynamics such that

Continuous-time normalizing �ows

The instantaneous change of variable yields

z ∼ p(z)0

= f (z(t), t, θ)
dt

dz(t)

x = z(1) = z + f (z(t), t)dt.0 ∫
0

1

log p(x) = log p(z(0)) − Tr dt.∫
0

1

(
∂z(t)

∂f (z(t), t, θ)
)

―
Image credits: Grathwohl et al, 2018. 38 / 57

https://arxiv.org/abs/1810.01367

Epistemic uncertainty

39 / 57

Epistemic uncertainty accounts for uncertainty in the model or in its
parameters. It captures our ignorance about which model can best explain the
collected data. It can be explained away given enough data.

―
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 40 / 57

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

Bayesian neural networks
To capture epistemic uncertainty in a neural network, we model our ignorance
with a prior distribution over its weights and estimate the posterior
distribution given the training set .

p(ω)
p(ω∣d) d

41 / 57

The prior predictive distribution at is given by integrating over all possible
weight con�gurations,

Given training data a Bayesian update results in
the posterior

where the likelihood

The posterior predictive distribution is then given by

x

p(y∣x) = p(y∣x,ω)p(ω)dω.∫

d = {(x , y), ..., (x , y)}1 1 N N

p(ω∣d) =
p(d)

p(d∣ω)p(ω)

p(d∣ω) = p(y ∣x ,ω).∏i i i

p(y∣x,d) = p(y∣x,ω)p(ω∣d)dω.∫

42 / 57

Bayesian neural networks are easy to formulate, but notoriously di�cult to
perform inference in.

 is intractable to evaluate, which results in the posterior not being
tractable either.

Therefore, we must rely on approximations.

p(d) p(ω∣d)

43 / 57

Variational inference
Variational inference can be used for building an approximation of the
posterior .

We can show that minimizing

with respect to the variational parameters , is identical to maximizing the
evidence lower bound objective (ELBO)

q(ω; ν)
p(ω∣d)

KL(q(ω; ν)∣∣p(ω∣d))

ν

ELBO(ν) = E log p(d∣ω) − KL(q(ω; ν)∣∣p(ω)).q(ω;ν) []

44 / 57

The integral in the ELBO is not tractable for almost all , but it can be maximized
with stochastic gradient ascent:

1. Sample .

2. Do one step of maximization with respect to on

In the context of Bayesian neural networks, this procedure is also known as
Bayes by backprop (Blundell et al, 2015).

q

∼ q(ω; ν)ω̂

ν

(ν) = log p(d∣) − logL̂ ω̂
p()ω̂

q(; ν)ω̂

45 / 57

Dropout
Dropout is an empirical technique that was �rst proposed to avoid over�tting in
neural networks.

At each training step:

Remove each node in the network with a probability .

Update the weights of the remaining nodes with backpropagation.

p

46 / 57

At test time, either:

Make predictions using the trained network without dropout but rescaling
the weights by the dropout probability (fast and standard).

Sample neural networks using dropout and average their predictions
(slower but better principled).

p

T

47 / 57

48 / 57

Why does dropout work?

It makes the learned weights of a node less sensitive to the weights of the
other nodes.

This forces the network to learn several independent representations of the
patterns and thus decreases over�tting.

It approximates Bayesian model averaging.

49 / 57

Dropout does variational inference

What variational family would correspond to dropout?

Let us split the weights per layer, where is
further split per unit

Variational parameters are split similarly into , with
.

Then, the proposed is de�ned as follows:

where denotes a (multivariate) Dirac distribution centered at .

q

ω ω = {W , ...,W },1 L Wi

W = {w , ...,w }.i i,1 i,qi

ν ν = {M , ...,M }1 L

M = {m , ...,m }i i,1 i,qi

q(ω; ν)

q(ω; ν)

q(W ;M)i i

q(w ;m)i,k i,k

= q(W ;M)
i=1

∏
L

i i

= q(w ;m)
k=1

∏
qi

i,k i,k

= pδ (w) + (1 − p)δ (w)0 i,k mi,k i,k

δ (x)a a

50 / 57

That is, are obtained by setting columns
of to zero with probability .

This is strictly equivalent to dropout, i.e.
removing units from the network with
probability .

Given the previous de�nition for , sampling parameters
is done as follows:

Draw binary for each layer and unit .

Compute , where denotes a matrix
composed of the columns .

q = { , ..., }ω̂ Ŵ1 ŴL

z ∼ Bernoulli(1 − p)i,k i k

=M diag([z])Ŵi i i,k k=1
qi−1 Mi

mi,k

Ŵi

Mi p

p

51 / 57

Therefore, one step of stochastic gradient descent on the ELBO becomes:

1. Sample Randomly set units of the network to zero
Dropout.

2. Do one step of maximization with respect to on

∼ q(ω; ν)ω̂ ⇔ ⇔

ν = {M }i

(ν) = log p(d∣) − KL(q(ω; ν)∣∣p(ω)).L̂ ω̂

52 / 57

Maximizing is equivalent to minimizing

This is also equivalent to one minimization step of a standard classi�cation or
regression objective:

The �rst term is the typical objective (such as the cross-entropy).

The second term forces to remain close to the prior .

If is Gaussian, minimizing the is equivalent to regularization.

If is Laplacian, minimizing the is equivalent to regularization.

(ν)L̂

− (ν) = − log p(d∣) + KL(q(ω; ν)∣∣p(ω))L̂ ω̂

q p(ω)

p(ω) KL ℓ2
p(ω) KL ℓ1

53 / 57

Conversely, this shows that when training a network with dropout with a
standard classi�cation or regression objective, one is actually implicitly doing
variational inference to match the posterior distribution of the weights.

54 / 57

Uncertainty estimates from dropout

Proper uncertainty estimates at , accounting for both the aleatoric and
epistemic uncertainties, can be obtained in a principled way using Monte-Carlo
integration:

Draw sets of network parameters from .

Compute the predictions for the networks, .

Approximate the predictive mean and variance as

where is the assumed level of noise in the observational model.

x

T ω̂t q(ω; ν)

T {f (x;)}ω̂t t=1
T

E yp(y∣x,d) []

V yp(y∣x,d) []

≈ f (x;)
T

1

t=1

∑
T

ω̂t

≈ σ + f (x;) − y ,2

T

1

t=1

∑
T

ω̂t
2 Ê []2

σ2

55 / 57

(demo)

56 / 57

https://www.cs.ox.ac.uk/people/yarin.gal/website/blog_2248.html

Pixel-wise depth regression

―
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 57 / 57

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

The end.

57 / 57

