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Today

A recap on statistical learning:

Supervised learning

Empirical risk minimization

Under-fitting and over-fitting

Bias-variance dilemma
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Statistical learning



Supervised learning

Consider an unknown joint probability distribution px y.
Assume training data

(xi,Yi) ~ Pxy,

withx; e X,y € Y,i=1,...,N.

In most cases,
o X; isa p-dimensional vector of features or descriptors,

o Y; isascalar (e.g., a category or a real value).

The training data is generated i.i.d.

The training data can be of any finite size IV.

In general, we do not have any prior information about px y .
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Supervised learning is usually concerned with the two following inference
problems:

« Classification: Given (x;,v;) € X x Y = RP x N fori=1,...,N,we
want to estimate for any new x,

argmax p(Y = y|X = x).
y

« Regression: Given (x;,y;) € X x Y =RP x R, fori =1, ..., N, we want
to estimate for any new x,

E[Y]|X = x].
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Classification consists in identifying
a decision boundary between objects of distinct classes.
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Regression aims at estimating relationships among (usually continuous)
variables.
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Probabilistic perspective

Supervised learning can be framed as probabilistic inference, where the goal is
to estimate the conditional distribution

p(Y = y|X =x)
for any new (x,y).

This is the framing we will adopt in this course (starting from Lecture 2).



Empirical risk minimization

The traditional perspective on supervised learning is empirical risk
minimization.

Consider a function f : X — Y produced by some learning algorithm. The
predictions of this function can be evaluated through a loss

(Y xY SR,

such that £(y, f(x)) > 0 measures how close the prediction f(x) from y is.

Examples of loss functions

Classification: f(y, f(x)) — 1y7éf(X)

Regression: Uy, f(x)) = (y — f(x))?
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Let F denote the hypothesis space, i.e. the set of all functions f than can be
produced by the chosen learning algorithm.

We are looking for a function f € JF with a small expected risk (or
generalization error)

R(f) — ]E(xay)NpX,Y [E(y7 f(X))] :

This means that for a given data generating distribution px y and for a given
hypothesis space JF, the optimal model is

f« = arg 1}1€i]1;1R(f).
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Since px,y is unknown, the expected risk cannot be evaluated and the optimal
model cannot be determined.

However, if we have i.i.d. training datad = {(x;,¥;)|t = 1,..., N}, we can
compute an estimate, the empirical risk (or training error)

R = Z K yzg Xz

This estimator is unbiased and can be used for finding a good enough

approximation of f.. This results into the empirical risk minimization principle:

f& = arg rfmjl;lR(f, d)

11741



Most machine learning algorithms, including neural networks, implement
empirical risk minimization.

Under regularity assumptions, empirical risk minimizers converge:

lim £ = f.

N —oo
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Polynomial regression
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Consider the joint probability distribution px y induced by the data generating
process
(z,y) ~ pxy & x ~ U[-10;10],e ~ N(0,0%),y = g(z) + ¢

wherez € R,y € R and gis an unknown polynomial of degree 3.
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Our goal is to find a function f that makes good predictions on average over

PX)Y.

Consider the hypothesis space f € F of polynomials of degree 3 defined
through their parameters w € R* such that

=i deaz
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For this regression problem, we use the squared error loss
Uy, f(z;w)) = (y — fz; w))*
to measure how wrong the predictions are.
Therefore, our goal is to find the best value w, such that
w, = arg min R(w)

W

= arg m“i’n]E(m,y)Npr [(y — f(=; W))ﬂ
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Given a large enough training setd = {(z;,y;)|i = 1, ..., N}, the empirical
risk minimization principle tells us that a good estimate w< of w, can be found
by minimizing the empirical risk:

wd = arg min R(W d)

= arg min N E f(zi;w))?
(2i,3:) Gd
_ 1 d\2
= arg ngn N (¥ — Y wgzy)
(ziayi)ECI d=0
2
Y1 Y ... x3 w
.1 Y2 z) ... z3 wy
= arg min — —
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This is ordinary least squares regression, for which the solution is derived as
wd = (XTX)'XTy.

degree = 3, R(f.d)= 43.05

|
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The expected risk minimizer w, within our hypothesis space is g itself.

Therefore, on this toy problem, we can verify that
flz;wd) — f(z;w.) = g(z)as N — oo.
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Under-fitting and over-fitting

What if we consider a hypothesis space JF in which candidate functions f are
either too 'simple” or too ‘complex” with respect to the true data generating

process?
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" degree = 1, R(f d) = 640.80
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JF = polynomials of degree 1
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" degree = 2, R(f, d)=428.87
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JF = polynomials of degree 2
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" degree = 3, R(f d)= 43.05
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JF = polynomials of degree 3
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" degree = 4, R(f d)=37.69
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JF = polynomials of degree 4
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" degree = 5, R(f d)=29.75
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JF = polynomials of degree 5
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. degree = 10, R(f, d) = 14.23
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J = polynomials of degree 10

22 /41



— training error

lU’j

Degree d of the polynomial VS. error.
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Let Y% be the set of all functions f : X — .

We define the Bayes risk as the minimal expected risk over all possible
functions,

Rp = min R(f),
B]{g;}g(f)

and call the Bayes optimal model the model fg that achieves this minimum.

No model f can perform better than fp.
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The capacity of an hypothesis space induced by a learning algorithm intuitively
represents the ability to find a good model f € F for any function, regardless of
its complexity.

In practice, capacity can be controlled through hyper-parameters of the learning
algorithm. For example:

The degree of the family of polynomials;

The number of layers in a neural network;

The number of training iterations;

Regularization terms.
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o If the capacity of F is too low, then fp ¢ F and R(f) — Rp is large for
any f € F,including f. and £2. Such models f are said to underfit the
data.

o If the capacity of F is too high, then fg € F or R(f+) — Rp is small.
However, because of the high capacity of the hypothesis space, the
empirical risk minimizer ff could fit the training data arbitrarily well such
that

R(f{) > Rp > R(f,d) > 0.

In this situation, ff' becomes too specialized with respect to the true data
generating process and a large reduction of the empirical risk (often)
comes at the price of an increase of the expected risk of the empirical risk
minimizer R(f). In this situation, < is said to overfit the data.
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Therefore, our goal is to adjust the capacity of the hypothesis space such that
the expected risk of the empirical risk minimizer gets as low as possible.

Error
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When overfitting,
R(f) > Rp > R(f!,d) > 0.

This indicates that the empirical risk ﬁ( d.d) is a poor estimator of the
expected risk R(f9).

Nevertheless, an unbiased estimate of the expected risk can be obtained by
evaluating ff on data d;.s; independent from the training samples d:

R den) = D0 L £20x)

(xi 'Yi ) edtest

This test error estimate can be used to evaluate the actual performance of the
model. However, it should not be used, at the same time, for model selection.
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(Proper) evaluation protocol

Write code ———> Train ——> Test ——> Paper

N

There may be over-fitting, but it does not bias the final performance evaluation.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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This should be avoided at all costs!

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 31/41
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-

Instead, keep a separate validation set for tuning the hyper-parameters.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 32/41
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Bias-variance decomposition

Consider a fixed point « and the prediction Y = ff (x) of the empirical risk
minimizer at x.

Then the local expected risk of f& is

R(ff\:c) - EyNme (y (z)
= By, ( — fa(x) + fa(z) — fi(2))*]
- Eywm (y — fe(z)) } +Ey~pm [ fe(z) — f(w))2}
= R(fglz) + (f(z) — f(2))’

)]

*“'&

where

« R(fp|x)is the local expected risk of the Bayes model. This term cannot be
reduced.

e (fa(z) — f4(x))? represents the discrepancy between fz and f3.
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Ifd ~ px vy is itself considered as a random variable, then f,,fi IS also arandom
variable, along with its predictions Y.
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degree =1, N =15
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degree = 2, N =15
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degree = 3, N =15
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degree = 4, N = 15
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degree =5, N =15
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Formally, the expected local expected risk yields to:

= Eq [R(f3|z) + (f5(x) — £ (2))?]

= R(fB|z) + Ea [(fz(z) — f3(z))*]

= R(fp|2) + (fp(z) — Ea [£1(2)])* + Ea [(Ea [f1(@)] — £1(@))’]
noise(z) bias? (z) o var(z) ’

This decomposition is known as the bias-variance decomposition.

e The noise term quantifies the irreducible part of the expected risk.

e The bias term measures the discrepancy between the average model and
the Bayes model.

e The variance term quantities the variability of the predictions.
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Bias-variance trade-off

e Reducing the capacity makes ff fit the data less on average, which
increases the bias term.

e Increasing the capacity makes ff vary a lot with the training data, which
increases the variance term.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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What about a neural network with millions of parameters?
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1-hidden layer MLP of width = 1000000, ﬁ{f, d)j=21.86
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under-fitting
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Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold

have zero training risk.

Credits: Belkin et al, 2018.


https://arxiv.org/abs/1812.11118

Credits: Belkin et al, 2018.
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Figure 4: Double descent risk curve for fully connected neural network on MNIST.
Training and test risks of network with a single layer of H hidden units, learned on a subset of
MNIST (n = 4-10%, d = 784, K = 10 classes). The number of parameters is (d+1)-H+(H+1)- K.
The interpolation threshold (black dotted line) is observed at n - K.
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The end.
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