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Today
A recap on statistical learning:

Supervised learning

Empirical risk minimization

Under-�tting and over-�tting

Bias-variance dilemma
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Statistical learning
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Supervised learning
Consider an unknown joint probability distribution .

Assume training data

with , , .

In most cases,

 is a -dimensional vector of features or descriptors,

 is a scalar (e.g., a category or a real value).

The training data is generated i.i.d.

The training data can be of any �nite size .

In general, we do not have any prior information about .

pX ,Y

(x , y ) ∼ p ,i i X ,Y

x ∈ Xi y ∈ Yi i = 1, ...,N

xi p

yi

N

pX ,Y
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Supervised learning is usually concerned with the two following inference

problems:

Classi�cation: Given , for , we

want to estimate for any new ,

Regression: Given , for , we want

to estimate for any new ,

(x , y ) ∈ X × Y = R ×△i i
p C i = 1, ...,N

x

arg p(Y = y∣X = x).
y
max

(x , y ) ∈ X × Y = R × Ri i
p i = 1, ...,N

x

E Y ∣X = x .[ ]
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Classi�cation consists in identifying

a decision boundary between objects of distinct classes.
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Regression aims at estimating relationships among (usually continuous)

variables.
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Probabilistic perspective

Supervised learning can be framed as probabilistic inference, where the goal is

to estimate the conditional distribution

for any new .

This is the framing we will adopt in this course (starting from Lecture 2).

p(Y = y∣X = x)

(x, y)
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Classi�cation:

Regression:

Empirical risk minimization
The traditional perspective on supervised learning is empirical risk

minimization.

Consider a function  produced by some learning algorithm. The

predictions of this function can be evaluated through a loss

such that  measures how close the prediction  from  is.

Examples of loss functions

f : X → Y

ℓ : Y × Y → R,

ℓ(y, f (x)) ≥ 0 f (x) y

ℓ(y, f (x)) = 1y≠f(x)

ℓ(y, f (x)) = (y − f (x))2
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Let  denote the hypothesis space, i.e. the set of all functions  than can be

produced by the chosen learning algorithm.

We are looking for a function  with a small expected risk (or

generalization error)

This means that for a given data generating distribution  and for a given

hypothesis space , the optimal model is

F f

f ∈ F

R(f ) = E ℓ(y, f (x)) .(x,y)∼pX ,Y [ ]

pX ,Y
F

f = arg R(f ).∗
f∈F
min
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Since  is unknown, the expected risk cannot be evaluated and the optimal

model cannot be determined.

However, if we have i.i.d. training data , we can

compute an estimate, the empirical risk (or training error)

This estimator is unbiased and can be used for �nding a good enough

approximation of . This results into the empirical risk minimization principle:

pX ,Y

d = {(x , y )∣i = 1,…,N}i i

(f ,d) = ℓ(y , f (x )).R̂
N

1

(x ,y )∈di i

∑ i i

f∗

f = arg (f ,d)∗
d

f∈F
min R̂
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Most machine learning algorithms, including neural networks, implement

empirical risk minimization.

Under regularity assumptions, empirical risk minimizers converge:

f = f
N→∞
lim ∗

d
∗
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Polynomial regression

Consider the joint probability distribution  induced by the data generating

process

where ,  and  is an unknown polynomial of degree 3.

pX ,Y

(x, y) ∼ p ⇔ x ∼ U [−10; 10], ϵ ∼ N (0, σ ), y = g(x) + ϵX ,Y
2

x ∈ R y ∈ R g
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Our goal is to �nd a function  that makes good predictions on average over 

.

Consider the hypothesis space  of polynomials of degree 3 de�ned

through their parameters  such that

f

pX ,Y

f ∈ F
w ∈ R4

≜ f (x;w) = w xŷ

d=0

∑
3

d
d
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For this regression problem, we use the squared error loss

to measure how wrong the predictions are.

Therefore, our goal is to �nd the best value  such that

ℓ(y, f (x;w)) = (y − f (x;w))2

w∗

w∗ = arg R(w)
w
min

= arg E (y − f (x;w))
w
min (x,y)∼pX ,Y [ 2]
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Given a large enough training set , the empirical

risk minimization principle tells us that a good estimate  of  can be found

by minimizing the empirical risk:

d = {(x , y )∣i = 1,…,N}i i

w∗
d w∗

w∗
d = arg (w,d)

w
min R̂

= arg (y − f (x ;w))
w
min

N

1

(x ,y )∈di i

∑ i i
2

= arg (y − w x )
w
min

N

1

(x ,y )∈di i

∑ i

d=0

∑
3

d i
d 2

= arg −
w
min

N

1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

y

⎝
⎜
⎜
⎛ y1
y2
…
yN ⎠

⎟
⎟
⎞

X

⎝
⎜
⎜
⎛ x …x1

0
1
3

x …x2
0

2
3

…
x …xN
0

N
3 ⎠
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⎞
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⎛w0
w1
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⎟
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⎞
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∥
∥
∥
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This is ordinary least squares regression, for which the solution is derived as

w = (X X) X y.∗
d T −1 T
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The expected risk minimizer  within our hypothesis space is  itself.

Therefore, on this toy problem, we can verify that 

 as .

w∗ g

f (x;w ) → f (x;w ) = g(x)∗
d

∗ N →∞
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Under-�tting and over-�tting
What if we consider a hypothesis space  in which candidate functions  are

either too "simple" or too "complex" with respect to the true data generating

process?

F f
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Which model would you choose?

f (x) = w + w x1 0 1 f (x) = w x2 ∑j=0
3

j
j

f (x) = w x3 ∑j=0
104

j
j
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 = polynomials of degree 1F
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 = polynomials of degree 2F
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 = polynomials of degree 3F
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 = polynomials of degree 4F
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 = polynomials of degree 5F
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 = polynomials of degree 10F
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Degree  of the polynomial VS. error.d
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Let  be the set of all functions .

We de�ne the Bayes risk as the minimal expected risk over all possible

functions,

and call the Bayes optimal model the model  that achieves this minimum.

No model  can perform better than .

YX f : X → Y

R = R(f ),B
f∈YX
min

fB

f fB
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The capacity of an hypothesis space induced by a learning algorithm intuitively

represents the ability to �nd a good model  for any function, regardless of

its complexity.

In practice, capacity can be controlled through hyper-parameters of the learning

algorithm. For example:

The degree of the family of polynomials;

The number of layers in a neural network;

The number of training iterations;

Regularization terms.

f ∈ F
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If the capacity of  is too low, then  and  is large for

any , including  and . Such models  are said to under�t the

data.

If the capacity of  is too high, then  or  is small.

However, because of the high capacity of the hypothesis space, the

empirical risk minimizer  could �t the training data arbitrarily well such

that

In this situation,  becomes too specialized with respect to the true data

generating process and a large reduction of the empirical risk (often)

comes at the price of an increase of the expected risk of the empirical risk

minimizer . In this situation,  is said to over�t the data.

F f ∉ FB R(f ) − RB
f ∈ F f∗ f∗

d f

F f ∈ FB R(f ) − R∗ B

f∗
d

R(f ) ≥ R ≥ (f ,d) ≥ 0.∗
d

B R̂ ∗
d

f∗
d

R(f )∗
d f∗

d
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Therefore, our goal is to adjust the capacity of the hypothesis space such that

the expected risk of the empirical risk minimizer gets as low as possible.
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When over�tting,

This indicates that the empirical risk  is a poor estimator of the

expected risk .

Nevertheless, an unbiased estimate of the expected risk can be obtained by

evaluating  on data  independent from the training samples :

This test error estimate can be used to evaluate the actual performance of the

model. However, it should not be used, at the same time, for model selection.

R(f ) ≥ R ≥ (f ,d) ≥ 0.∗
d

B R̂ ∗
d

(f ,d)R̂ ∗
d

R(f )∗
d

f∗
d dtest d

(f ,d ) = ℓ(y , f (x ))R̂ ∗
d

test
N

1

(x ,y )∈di i test

∑ i ∗
d

i
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Degree  of the polynomial VS. error.d
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(Proper) evaluation protocol

There may be over-�tting, but it does not bias the �nal performance evaluation.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 30 / 41
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This should be avoided at all costs!

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 31 / 41
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Instead, keep a separate validation set for tuning the hyper-parameters.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 32 / 41
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Bias-variance decomposition

Consider a �xed point  and the prediction  of the empirical risk

minimizer at .

Then the local expected risk of  is

where

 is the local expected risk of the Bayes model. This term cannot be

reduced.

 represents the discrepancy between  and .

x = f (x)Ŷ ∗
d

x

f∗
d

R(f ∣x)∗
d = E (y − f (x))y∼pY ∣x [ ∗

d 2]

= E (y − f (x) + f (x) − f (x))y∼pY ∣x [ B B ∗
d 2]

= E (y − f (x)) + E (f (x) − f (x))y∼pY ∣x [ B
2] y∼pY ∣x [ B ∗

d 2]

= R(f ∣x) + (f (x) − f (x))B B ∗
d 2

R(f ∣x)B

(f (x) − f (x))B ∗
d 2 fB f∗

d
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If  is itself considered as a random variable, then  is also a random

variable, along with its predictions .

d ∼ pX ,Y f∗
d

Ŷ
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Formally, the expected local expected risk yields to:

This decomposition is known as the bias-variance decomposition.

The noise term quanti�es the irreducible part of the expected risk.

The bias term measures the discrepancy between the average model and

the Bayes model.

The variance term quantities the variability of the predictions.

E R(f ∣x)d [ ∗
d ]

= E R(f ∣x) + (f (x) − f (x))d [ B B ∗
d 2]

= R(f ∣x) + E (f (x) − f (x))B d [ B ∗
d 2]

= + +
noise(x)

R(f ∣x)B

bias (x)2

(f (x) − E f (x) )B d [ ∗
d ] 2

var(x)

E (E f (x) − f (x))d [ d [ ∗
d ] ∗

d 2]
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Bias-variance trade-off

Reducing the capacity makes  �t the data less on average, which

increases the bias term.

Increasing the capacity makes  vary a lot with the training data, which

increases the variance term.

f∗
d

f∗
d

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 37 / 41
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What about a neural network with millions of parameters?
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―
Credits: Belkin et al, 2018. 40 / 41

https://arxiv.org/abs/1812.11118


―
Credits: Belkin et al, 2018. 41 / 41

https://arxiv.org/abs/1812.11118


The end.
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