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e Course outline
e Introduction to deep learning

e Fundamentals of machine learning
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Outline

Lecture 1: Fundamentals of machine learning
Lecture 2: Multi-layer perceptron

Lecture 3: Automatic differentiation

Lecture 4: Training neural networks

Lecture 5: Convolutional neural networks
Lecture 6: Computer vision

Lecture 7: Attention and transformer networks
Lecture 8: GPT

Lecture 9: Graph neural networks

Lecture 10: Uncertainty

Lecture 11: Auto-encoders and variational auto-encoders

Lecture 12: Score-based diffusion models
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My mission

By the end of this course, you will have a strong and comprehensive
understanding of deep learning.

You will learn how to design deep neural networks for various advanced
probabilistic inference tasks and how to train them.

The models covered in this course have broad applications in artificial
intelligence, engineering, and science.
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Why learning?



What do you see?



Sheepdog or mop?

Credits: Karen Zack, 2016. 8/40


https://twitter.com/teenybiscuit

Chihuahua or muffin?

Credits: Karen Zack. 2016. 9/40


https://twitter.com/teenybiscuit

The (human) brain is so good at interpreting visual information that the gap
between raw data and its semantic interpretation is difficult to assess
intuitively.

This is a mushroom.
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This is a mushroom.



+ +

Thisis a mushroom.
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This is a mushroom.



Writing a computer program that sees?

14/ 40



15740












To extract semantic information, we need models with high complexity that
cannot be manually designed.

However, we can write a program that learns the task of extracting semantic
information.
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The machine learning approach consists in:

e defining a parametric model

e optimizing its parameters, by "'making it work" on the training data.
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The deep learning revolution
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Deep learning scales up the statistical and machine learning approaches by

e using larger models known as neural networks,
e training on larger datasets,

e uUsing more compute resources.
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Specialized neural networks can be trained achieve super-human performance
on many complex tasks that were previously thought to be out of reach for
machines.

I: Jane went to the hallway.

I: Mary walked to the bathroom.
I: Sandra went to the garden.

I: Daniel went back to the garden.
I: Sandra took the milk there.

Q: Where is the milk?

A: garden

(Top) Scene understanding, pose estimation, geometric reasoning.
(Bottom) Planning, Image captioning, Question answering.

Credits: Frangois Fleuret, 2023. 21/40



Neural networks form primitives that can be transferred to many domains.

Target Measurement

N\
7

Image Space

K-Space

T
=
/— w
| g > — mean uni-modal
a) | . b) c) d = , €
— mean population X o = k == +f-std
) _ o © \ ,
£3p © - - +/-std % N c i’ % — mean multi-modal
= c Neural ,13,9 ,13,3 - k=2 - - +/-std
A — % Posterior _ w N
Full-Body ™ Estimation Z ® g
Hemc?- o ] v o = a8
dynamics o © o e P
Simulator e ‘(5 -
Time (s) a RN ime (s)
LVET [mL]

(Top) Analysis of histological slides, denoising of MRl images, nevus detection.
(Bottom) Whole-body hemodynamics reconstruction from PPG signals.
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Powering the future of clean energy (NVIDIA, 2023)
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https://www.youtube.com/watch?v=zrcxLZmOyNA

How Al is advancing medicine (Google, 2023)
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https://www.youtube.com/watch?v=AbdVsi1VjQY

Building autonomous cars (Waymo, 2022)
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https://www.youtube.com/watch?v=hA_-MkU0Nfw

The breakthrough

Decoder
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A brutal simplicity:

e The more data, the better the model.
e The more parameters, the better the model.

e The more compute, the better the model.

Scaling up further to gigantic models, datasets, and compute resources keeps
pushing the boundaries of what is possible, with no sign of slowing down.




Conversational Al assistants (Anthropic, 2024)
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https://www.youtube.com/watch?v=-dWfl7Dhb0o
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Code assistants (Cursor, 2024)
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https://www.youtube.com/watch?v=o5uvDZ8srHA
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Not just text, but also images and sounds.
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https://www.youtube.com/watch?v=fWWCdqyYRPI

With great power comes great responsibility.
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International
Al Safety Report

The International Scientific
on the Safety of Advancer

January 2025

Risks

The report classifies risks associated with general-purpose Al into three
categories:

1. Risks from malicious use (scams, manipulation, cyberattacks,
biological/chemical attacks)

2. Risks from malfunctions (hallucinations, biases, loss of control)

3. Systemic risks (labour market risks, global R&D divide, power
concentration)

Credits: Bengio etal, 2025 (arXiv:2501.17805).


https://arxiv.org/abs/2501.17805
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Environmental impacts

"Al is a moderate but rapidly growing contributor to global environmental
impacts through energy use and greenhouse gas (GHG) emissions. Current
estimates indicate that data centres and data transmission account for an
estimated 1% of global energy-related GHG emissions, with Al consuming 10-
28% of data centre energy capacity. Al energy demand is expected to grow
substantially [...]"

Credits: Bengio et al, 2025 (arXiv:i2501.17805). 33/40


https://arxiv.org/abs/2501.17805
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Abstract

The rise of Generative Al (GenAl) in knowledge workflows raises

questions about its impact on critical thinking skills and practices.

We survey 319 knowledge workers to investigate 1) when and
how they perceive the enaction of critical thinking when using

GenAl and 2) when and why GenAl affects their effort to do so.

Participants shared 936 first-hand examples of using GenAl in work
tasks. Q  when both task- and user-specific
factors, a user's task-specifie self-confi and confid

GenAl are predictive of whether eritical thinking is enacted and
the effort of doing so in GenAl-assisted tasks. Specifically, higher
confidence in GenAl is associated with less eritical thinking, while

in

higher self-confidence is associated with more critical thinking.

Qualitatively, GenAl shifts the nature of critical thinking toward

information verification, response integration. and task stewardship.

Our insights reveal new design challenges and opportunities for

Confidence Effects From a Survey of Knowledge Workers. In CHI Conference
on Human Factors in Computing Systems (CHI '25), April 26-May 01, 2025,
Yokohama, Japan. ACM, New York, NY, USA. 23 pages. hitps://doi.org/10.
1145/3706598.3713778

1 Introduction
Generative Al (GenAl) tools, defined as any “end user tool [...] whose
technical implementation includes a generative model based on deep
learning”! are the latest in a long line of technologies that raise
questions about their impact on the quality of human thought, a line
that includes writing (objected to by Socrates), printing (objected to
by Trithemius), calculators (objected to by teachers of arithmetic),
and the Internet.

Such consternation is not unfounded. Used improperly, technolo-
gies can and do result in the deterioration of cognitive faculties
that ought to be preserved. As Bainbridge (7] noted, a key irony

developing GenAl tools for knowledge work. of automation is that by mechanising routine tasks and leaving

Dumb and dumber

"When people rely on generative Al, their effort shifts toward verifying that an
Al's response is good enough to use, instead of using higher-order critical
thinking skills like creating, evaluating, and analyzing information. If humans
only intervene when Al responses are insufficient then workers are deprived of
routine opportunities to practice their judgment and strengthen their cognitive
musculature, leaving them atrophied and unprepared [...]"



Deep learning can also solve problems that no one could solve before.



AlphaFold: From a sequence of amino acids to a 3D structure

nature

Explore content ~  About the journal ~  Publish with us ~

nature » articles » article

Article | Open access | Published: 15 July 2021

Highly accurate protein structure prediction with
AlphaFold

John Jumper &, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn

Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A.

A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,

Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, .. Demis Hassabis &

+ Show authors

Nature 596, 583-589 (2021) | Cite this article

1.42m Accesses | 12k Citations | 3493 Altmetric | Metrics

Abstract

Proteins are essential to life, and understanding their structure can facilitate a mechanistic
understanding of their function. Through an enormous experimental effortl224, the
structures of around 100,000 unique proteins have been determined?, but this represents a
small fraction of the billions of known protein sequences®Z, Structural coverage is
bottlenecked by the months to years of painstaking effort required to determine a single
protein structure. Accurate computational approaches are needed to address this gap and to
enable large-scale structural bioinformatics. Predicting the three-dimensional structure that
aprotein will adopt based solely on its amino acid sequence—the structure prediction
component of the ‘protein folding problem’8—has been an important open research problem
for more than 50 yearsZ. Despite recent progress!&IL121214 existing methods fall far short of 36/ 40
atomic accuracy, especially when no homologous structure is available. Here we provide the



(@) AlphaFold: The making of a scientific breakt... L ~»

Al for Science (Deepmind, AlphaFold, 2020)

37/40


https://www.youtube.com/watch?v=gg7WjuFs8F4

Drug discovery with graph neural networks

Cell

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract
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In Brief

A trained deep neural network predicts
antibiotic activity in molecules that are
structurally different from known
antibiotics, among which Halicin exhibits
efficacy against broad-spectrum
bacterial infections in mice.



GraphCast: fast and accurate weather forecasts

a) Input weather state b) Predict the next state c) Roll out a forecast

GraphCast

0
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For the last forty years we have programmed computers; for the next forty years
we will train them.

Chris Bishop, 2020.
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The end.
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