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Today

How to make sense of sequential data?

e Recurrent neural networks
e Applications

e Beyond sequences
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Many real-world problems require to process a signal with a sequence structure.

e Sequence classification:
o sentiment analysis in text
o activity/action recognition in videos

o DNA sequence classification

e Sequence synthesis:
o textsynthesis
o musicsynthesis

o motion synthesis

e Sequence-to-sequence translation:
o speech recognition
o texttranslation

o part-of-speech tagging

Credits: Francois Fleuret, 14x050/EE559 Deep Learning, EPFL. 3/64


https://fleuret.org/dlc/

Given aset X, if S(X') denotes the set of sequences of elements from X,
S(X) - Uch)il Xt?

then we formally define:

Sequence classification f:8(X)— A°
Sequence synthesis f:RY— S(X)
Sequence-to-sequence translation f:8X)— S

In the rest of the slides, we consider only time-indexed signal, although it
generalizes to arbitrary sequences.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 4/ 64


https://fleuret.org/ee559/

Recurrent neural networks



When the input is a sequence x € S(R?) of variable length T'(x), the historical
approach is to use a recurrent model which maintains a recurrent state h; € [RY
updated at each time step ?.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 6/64


https://fleuret.org/ee559/

Formally,fort = 1,...,T'(x),
h; = ¢(x¢,hy156),
where ¢ : RP X R? — R?andhy € RY.
Predictions can be computed at any time step ¢ from the recurrent state,
yr = ¢(hy; 0),

with) : R — RC.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 7/ 64


https://fleuret.org/ee559/
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Even though the number of steps I’ depends on X, this is a standard
computational graph, and automatic differentiation can deal with it as usual.

In the case of recurrent neural networks, this is referred to as backpropagation
through time.
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Elman networks

Elman networks consist of ¢ and 1 defined as primitive neuron units, such as
logistic regression units

ht — Op (thxt —|— W,-fl;hht—l + bh)
Yy = Oy (Wght + by)
where Wgh S ]Rpxq,th € R7 by, € R?,b, € R,hy = 0,and where gy,

and o, are non-linear activation functions, such as the sigmoid function, tanh or

ReLU.
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Benchmark example

Learn to recognize variable-length sequences that are palindromes. For training,
we use sequences of random sizes, from 1 to 10.

X Y
(1,2,3,2,1) 1
(2,1,2) 1
(3,4,1,2) 0
(0) 1
(1,4) 0
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Bidirectional RNNs

Computing the recurrent states forward in time does not make use of future
input values X;, 1.7, even though there are known.

e RNNSs can be made bidirectional by consuming the sequence in both
directions.

o Effectively, this amounts to run the same (single direction) RNN twice:

o onceover theoriginal sequence Xi.7,

o onceover thereversed sequence X7.1.

e Theresulting recurrent states of the bidirectional RNN is the concatenation
of two resulting sequences of recurrent states.
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Stacked RNNs

Recurrent networks can be viewed as layers producing sequences th of

activations.

As for dense layers, recurrent layers can be composed in series to form a stack of
recurrent networks.

RNN

RNN

N

RNN

_,@
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Gating

When unfolded through time, the graph of computation of a recurrent network
can grow very deep, and training involves dealing with vanishing gradients.

e RNN cells should include a pass-through, or additive paths, so that the
recurrent state does not go repeatedly through a squashing non-linearity.

e Thisisidentical to skip connections in ResNet.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 18/ 64


https://fleuret.org/ee559/

For instance, the recurrent state update can be a per-component weighted
average of its previous value h;_1 and a full update h;, with the weighting z;
depending on the input and the recurrent state, hence acting as a forget gate.

Formally,
Et — ¢(Xt7 h; i; 9)

z: = f(x¢,he1;0)
ht — 2 ®ht—1 —|— (]. — Zt) @Et

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 19/ 64


https://fleuret.org/ee559/
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LSTM

The long short-term memory model (LSTM; Hochreiter and Schmidhuber, 1997) is
an instance of the previous gated recurrent cell, with the following changes:

e Therecurrent state is split into two parts ¢; and h,, where
o ¢;isthecell stateand

o h;isoutput state.

Aforget gate f; selects the cell state information to erase.

An input gate i; selects the cell state information to update.

An output gate 0; selects the cell state information to output.
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GRU

The gated recurrent unit (GRU; Cho et al, 2014) is another gated recurrent cell. It
uses two gates instead of three: an update gate z; and a reset gate r;.
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Cross-entropy
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Exploding gradients

Gated units prevent gradients from vanishing, but not from exploding.

output/batch_loss_1

100

8.00

B NN
4.00 — T

50.00k 100.0k 150.0k 200.0K 250.0K

Credits: pat-coady. 32/ 64


https://pat-coady.github.io/rnn/

Without clipping With clipping

Sl b)

J(w,b)

V
b

The standard strategy to solve this issue is gradient norm clipping, which rescales
the norm of the gradient to a fixed threshold  when it is above:

- V¥
V \Y
F= g mn(Iv AL,
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Credits: Francois Fleuret, EE559 Deep Learning, EPFL.


https://fleuret.org/ee559/

Orthogonal initialization

Let us consider a simplified RNN, with no inputs, no bias, an identity activation
function o (as in the positive part of a ReLU) and the initial recurrent state hg set
to the identity matrix.

We have,

h, =0 (Wo,x; + Wy,hy 1 +by)

For a sequence of size n, it comes
h, = W(W(W(...(Why)...))) = W"hy = W"] = W™".

Ideally, we would like W to neither vanish nor explode as n increases.
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Fibonacci digression

The Fibonacci sequence is
0,1,1,2,3.5,8,13,21, 34,55, 89, 144, 233, 377, ...

It grows fast! But how fast?

35/64



In matrix form, the Fibonacci sequence is equivalently expressed as

( k+2) (1 1> ( k 1)
fk 1 1 O fk .
With fy = (é),we have

fr1 = Af, = AFf,.

36/ 64



The matrix A can be diagonalized as

A =SAS,
where
(¢ O
A_(O —901>
-1
_ [P —¥
s-(1 1)
In particular,

A" =SA"S™1.

Therefore, the Fibonacci sequence grows exponentially fast with the golden ratio

Q.
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Theorem

Let p(A ) be the spectral radius of the matrix A, defined as
p(A) = max{|A], ..., | Aa|}-

We have:

e if p(A) < Lthenlim, .. ||A"|| = 0(=vanishing activations),

e ifp(A) > Lthenlim, .. ||A"|| = oo (= exploding activations).

38/64
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p(A) < 1, A" vanish.

Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 39/ 64


https://smerity.com/articles/2016/orthogonal_init.html
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Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 40/ 64


https://smerity.com/articles/2016/orthogonal_init.html

Orthogonal initialization

If A is orthogonal, then it is diagonalizable and all its eigenvalues are equal to —1
or 1. In this case, the norm of

A" = SA"S!
remains bounded.

e Therefore, initializing W as a random orthogonal matrix will guarantee that
activations will neither vanish nor explode.

e In practice,arandom orthogonal matrix can be found through the SVD
decomposition or the QR factorization of a random matrix.

e This initialization strategy is known as orthogonal initialization.
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Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 42/ 64


https://smerity.com/articles/2016/orthogonal_init.html

Exploding activations are also the reason why squashing non-linearity functions
(such as tanh or sigmoids) are preferred in RNNs, since they avoid recurrent

states from exploding by upper bounding ||y ||.

(At least when running the network forward.)
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Some applications



Sentiment analysis

Document Representation

Document Composition

Sentence Representation

Sentence Composition

Word Representation

Backward Gated

Neural Network

Forward Gated
Neural Network

Backward Gated

Neural Network |
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T

Document-level modeling for sentiment analysis (= text classification),
with stacked, bidirectional and gated recurrent networks.

Credits: Duyu Tang et al, Document Modeling with Gated Recurrent Neural Network for Sentiment Classification, 2015.
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http://www.aclweb.org/anthology/D15-1167

Language models

Language models model language as a Markov chain, in which sentences are
sequences of words w1.7 drawn repeatedly from p(wt \let_l )

This is an instance of sequence synthesis, for which predictions are computed at
all time steps £.

Outputs

Hidden Layers

Inputs

Figure 1: Deep recurrent neural network prediction architecture. The
circles represent network layers, the solid lines represent weighted connections
and the dashed lines represent predictions.

Credits: Alex Graves, Generating Sequences With Recurrent Neural Networks, 2013. 46/ 64


https://arxiv.org/abs/1308.0850

maxs-mbp:tweet-generator maxwoolf$ python3

Python 3.6.4 (default, Jan & 2018, 11:51:59)

[GCC 4.2.1 Compatible Apple LLVM 9.06.9 (clang-900.8.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Credits: Max Woolf, 2018. 47/ 64


https://drive.google.com/file/d/1mMKGnVxirJnqDViH7BDJxFqWrsXlPSoK/view?usp=sharing

Sequence synthesis

The same generative architecture applies to any kind of sequences. E.g., sket ch-
rnn-demo for sketches defined as sequences of strokes.

B 4y o [
el Ah @Y S
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https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

Text-to-speech synthesis

Waveform
Mel Spectrogram Samples
5 Conv Layer WaveNet
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Image credits: Shen et al, 2017. arXiv:1712.05884.


https://arxiv.org/abs/1712.05884

Lip-reading in the wild
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Figure 1. Watch, Listen, Attend and Spell architecture. At each time step, the decoder outputs a character y;, as well as two attention
vectors. The attention vectors are used to select the appropriate period of the input visual and audio sequences.

input (120x120) convl conv2 convi conv4d convh fc6

conv
max
nori

conv
max
norm

Figure 2. The ConvNet architecture. The input is five gray level frames centered on the mouth region. The 512-dimensional fc6 vector

forms the input to the LSTM.

Image credits: Chunget al, 2016. arXiv:1611.05358.
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https://arxiv.org/abs/1611.05358
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https://www.youtube.com/watch?v=5aogzAUPilE

Learning to control

Arecurrent network playing Mario Kart.
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https://www.youtube.com/watch?v=Ipi40cb_RsI

Beyond sequences



An increasingly large number of people are defining the networks procedurally in
a data-dependent way (with loops and conditionals), allowing them to change

dynamically as a function of the input data fed to them. It's really very much like a
regular program, except it's parameterized.

Yann LeCun (Director of Al Research, Facebook, 2018)
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Programs as neural nets

The topology of a recurrent network unrolled through time is not fixed, but
dynamic. It depends on:

e the input sequence and its size

e agraph construction algorithms which consumes input tokens in sequence
to add layers to the graph of computation.
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This principle generalizes to:

e arbitrarily structured data (e.g., sequences, trees, graphs)

e arbitrary graph of computation construction algorithms that traverses these
structures (e.g., including for-loops or recursive calls).
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Neural message passing

/mi_r
mer

Algorithm 1 Message passing neural network
Require: N x D nodes x, adjacency matrix A
h <—Embed(x)
fort=1,...., T do
m <— Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Even though the graph topology is dynamic, the unrolled computation is fully
differentiable. The program is trainable.

Credits: Henrion et al, 2017.


https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

Graph neural network for object detection in point clouds

a: Graph Construction from a Point Cloud

c: Bounding Box Merging and Scoring

Merge bounding
boxes

Vertex state —
initialization

()

Figure 2. The architecture of the proposed approach. It has three main components: (a) graph construction from a point cloud, (b) a graph

MLP

MLP

MLP

Point-GNN

Graph neural network with T iterations
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neural network for object detection, and (c) bounding box merging and scoring.

Credits: Shi and Rajkumar, Point-GNN, 2020.
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https://arxiv.org/abs/2003.01251

Quantum chemistry with graph networks

Credits: Schutt et al, 2017.
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https://www.nature.com/articles/ncomms13890

Learning to simulate physics with graph networks

(a)  Xto

Learned simulator, sg

dp —1

(b) ENCODER GN! PROCESSOR aNM DECODER

X — _Go_r_,_é)_,G1 ee. M1 r .:é oM —» | . v

(c) Construct graph W0 (d) Pass messages (¢)  Extract dynamics info
© ! ¢ < (3
(1] m m+1
© i < ::’ Cij < i’ez‘,;r C
ce % vy eeQvr _’ké‘i. Q.M" i e *oeo %y
¢ © ¢ ¢ Pwo U P © ©
C C C C

Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dg, and a fixed update procedure.

(b) The dg uses an “encode-process-decode” scheme, which computes dynamics information, Y, from input state, X . (¢) The ENCODER
constructs latent graph, G, from the input state, X. (d) The PROCESSOR performs M rounds of learned message-passing over the latent
graphs, G, ..., GM. (e) The DECODER extracts dynamics information, Y, from the final latent graph, G

Credits: Sanchez-Gonzalez et al, 2020.
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https://arxiv.org/abs/2002.09405

Credits: Sanchez-Gonzalez et al, 2020. 61/ 64


https://arxiv.org/abs/2002.09405

Neural computers

0~-0l0

43‘U¢k3(ll)ooumer 2

s stales + state 0 read siack (1)~ read stack (p) p stacks  counter 4

B ‘\N {

FIG. 1. The universal network.

Any Turing machine can be simulated by a recurrent neural network
(Siegelmann and Sontag, 1995)



d Memory usage

a Controller b Read and write heads € Memory and temporal links
Write vector
. =« 0 ] .
Erase vector
T H H EEEN EhE
Write key

Read key
I Read mode
B[§F

Read key

Read mode

s[@F

LI

Networks can be coupled with memory storage to produce neural computers:

e The controller processes the input sequence and interacts with the memory
to generate the output.

e Theread and write operations attend to all the memory addresses.
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input (X) and target (y) prediction (y)

trhrhh g — -— —

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

write weighting (w,)

free gate (f)

5 10 15 20 25 30 35

allocation gate (g,)

15 20 25 30

E ]

A differentiable neural computer being trained to store and recall dense binary
numbers. Upper left: the input (red) and target (blue), as 5-bit words and a 1 bit
interrupt signal. Upper right: the model's output



The end.
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