
Deep Learning
Lecture: Recurrent neural networks (optional)

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 64

mailto:g.louppe@uliege.be

Today
How to make sense of sequential data?

Recurrent neural networks

Applications

Beyond sequences

2 / 64

Many real-world problems require to process a signal with a sequence structure.

Sequence classi�cation:

sentiment analysis in text

activity/action recognition in videos

DNA sequence classi�cation

Sequence synthesis:

text synthesis

music synthesis

motion synthesis

Sequence-to-sequence translation:

speech recognition

text translation

part-of-speech tagging

―
Credits: Francois Fleuret, 14x050/EE559 Deep Learning, EPFL. 3 / 64

https://fleuret.org/dlc/

Sequence classi�cation

Sequence synthesis

Sequence-to-sequence translation

Given a set , if denotes the set of sequences of elements from ,

then we formally de�ne:

In the rest of the slides, we consider only time-indexed signal, although it
generalizes to arbitrary sequences.

X S(X) X

S(X) = ∪ X ,t=1
∞ t

f : S(X) → △C

f : R → S(X)d

f : S(X) → S(Y)

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 4 / 64

https://fleuret.org/ee559/

Recurrent neural networks

5 / 64

When the input is a sequence of variable length , the historical

approach is to use a recurrent model which maintains a recurrent state

updated at each time step .

x ∈ S(R)p T (x)
h ∈ Rt

q

t

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 6 / 64

https://fleuret.org/ee559/

Formally, for ,

where and .

Predictions can be computed at any time step from the recurrent state,

with .

t = 1, ...,T (x)

h = ϕ(x ,h ; θ),t t t−1

ϕ : R ×R → Rp q q h ∈ R0
q

t

y = ψ(h ; θ),t t

ψ : R → Rq C

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 7 / 64

https://fleuret.org/ee559/

8 / 64

...

8 / 64

...

8 / 64

...

8 / 64

Even though the number of steps depends on , this is a standard

computational graph, and automatic differentiation can deal with it as usual.

In the case of recurrent neural networks, this is referred to as backpropagation
through time.

T x

9 / 64

...

10 / 64

Elman networks
Elman networks consist of and de�ned as primitive neuron units, such as

logistic regression units

where , and where

and are non-linear activation functions, such as the sigmoid function, or

.

ϕ ψ

ht

yt

= σ W x +W h + bh (xh
T

t hh
T

t−1 h)

= σ W h + by (y
T

t y)

W ∈ R ,W ∈ R ,b ∈ R , b ∈ R,h = 0xh
T p×q

hh
T q×q

h
q

y 0 σh

σy tanh
ReLU

11 / 64

Benchmark example

Learn to recognize variable-length sequences that are palindromes. For training,
we use sequences of random sizes, from to .1 10

x

(1, 2, 3, 2, 1)
(2, 1, 2)
(3, 4, 1, 2)
(0)
(1, 4)

y

1
1
0
1
0

12 / 64

13 / 64

Bidirectional RNNs
Computing the recurrent states forward in time does not make use of future

input values , even though there are known.

RNNs can be made bidirectional by consuming the sequence in both
directions.

Effectively, this amounts to run the same (single direction) RNN twice:

once over the original sequence ,

once over the reversed sequence .

The resulting recurrent states of the bidirectional RNN is the concatenation
of two resulting sequences of recurrent states.

xt+1:T

x1:T
xT :1

14 / 64

15 / 64

Stacked RNNs
Recurrent networks can be viewed as layers producing sequences of

activations.

As for dense layers, recurrent layers can be composed in series to form a stack of
recurrent networks.

RNN RNN RNN...

h1:T
ℓ

16 / 64

17 / 64

Gating
When unfolded through time, the graph of computation of a recurrent network
can grow very deep, and training involves dealing with vanishing gradients.

RNN cells should include a pass-through, or additive paths, so that the
recurrent state does not go repeatedly through a squashing non-linearity.

This is identical to skip connections in ResNet.

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 18 / 64

https://fleuret.org/ee559/

For instance, the recurrent state update can be a per-component weighted

average of its previous value and a full update , with the weighting

depending on the input and the recurrent state, hence acting as a forget gate.

Formally,

ht−1 h̄t zt

h̄t

zt

ht

= ϕ(x ,h ; θ)t t−1

= f(x ,h ; θ)t t−1

= z ⊙ h + (1 − z) ⊙ .t t−1 t h̄t

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 19 / 64

https://fleuret.org/ee559/

20 / 64

LSTM

The long short-term memory model (LSTM; Hochreiter and Schmidhuber, 1997) is
an instance of the previous gated recurrent cell, with the following changes:

The recurrent state is split into two parts and , where

 is the cell state and

 is output state.

A forget gate selects the cell state information to erase.

An input gate selects the cell state information to update.

An output gate selects the cell state information to output.

ct ht

ct

ht

f t

it

ot

21 / 64

tanh

tanh

f t = σ W [h ,x] + b(f
T

t−1 t f)

22 / 64

tanh

tanh

it
c̄t

= σ W [h ,x] + b(i
T

t−1 t i)

= tanh W [h ,x] + b(c
T

t−1 t c)

23 / 64

tanh

tanh

ct = f ⊙ c + i ⊙t t−1 t c̄t

24 / 64

tanh

tanh

ot

ht

= σ W [h ,x] + b(o
T

t−1 t o)

= o ⊙ tanh(c)t t

25 / 64

26 / 64

GRU

The gated recurrent unit (GRU; Cho et al, 2014) is another gated recurrent cell. It

uses two gates instead of three: an update gate and a reset gate .zt rt

27 / 64

tanh

zt
rt
h̄t

ht

= σ W [h ,x] + b(z
T

t−1 t z)

= σ W [h ,x] + b(r
T

t−1 t r)

= tanh W [r ⊙ h ,x] + b(h
T

t t−1 t h)

= (1 − z) ⊙ h + z ⊙t t−1 t h̄t

28 / 64

29 / 64

The models do not generalize to sequences longer than those in the training set!

30 / 64

(demo)

31 / 64

Exploding gradients
Gated units prevent gradients from vanishing, but not from exploding.

―
Credits: pat-coady. 32 / 64

https://pat-coady.github.io/rnn/

The standard strategy to solve this issue is gradient norm clipping, which rescales
the norm of the gradient to a �xed threshold when it is above:δ

f = min(∣∣∇f ∣∣, δ).∇
~

∣∣∇f ∣∣
∇f

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 33 / 64

https://fleuret.org/ee559/

Orthogonal initialization
Let us consider a simpli�ed RNN, with no inputs, no bias, an identity activation

function (as in the positive part of a ReLU) and the initial recurrent state set

to the identity matrix.

We have,

For a sequence of size , it comes

Ideally, we would like to neither vanish nor explode as increases.

σ h0

ht = σ W x +W h + b(xh
T

t hh
T

t−1 h)

=W hhh
T

t−1

=W h .T
t−1

n

h =W(W(W(...(Wh)...))) =W h =W I =W .n 0
n

0
n n

Wn n

34 / 64

Fibonacci digression

The Fibonacci sequence is

It grows fast! But how fast?

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...

35 / 64

In matrix form, the Fibonacci sequence is equivalently expressed as

With , we have

= .(
fk+2

fk+1
) (

1
1
1
0

) (
fk+1

fk
)

f =0 (
1
0)

f = Af = A f .k+1 k
k+1

0

36 / 64

The matrix can be diagonalized as

where

In particular,

Therefore, the Fibonacci sequence grows exponentially fast with the golden ratio

.

A

A = SΛS ,−1

.

Λ

S

= (
φ

0
0

−φ−1
)

= (
φ

1
−φ−1

1
)

A = SΛ S .n n −1

φ

37 / 64

Theorem

Let be the spectral radius of the matrix , de�ned as

We have:

if then (= vanishing activations),

if then (= exploding activations).

ρ(A) A

ρ(A) = max{∣λ ∣, ..., ∣λ ∣}.1 d

ρ(A) < 1 lim ∣∣A ∣∣ = 0n→∞
n

ρ(A) > 1 lim ∣∣A ∣∣ = ∞n→∞
n

38 / 64

, vanish.

0:00 / 0:03

ρ(A) < 1 An

―
Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 39 / 64

https://smerity.com/articles/2016/orthogonal_init.html

, explode.

0:00 / 0:03

ρ(A) > 1 An

―
Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 40 / 64

https://smerity.com/articles/2016/orthogonal_init.html

Orthogonal initialization

If is orthogonal, then it is diagonalizable and all its eigenvalues are equal to

or . In this case, the norm of

remains bounded.

Therefore, initializing as a random orthogonal matrix will guarantee that

activations will neither vanish nor explode.

In practice, a random orthogonal matrix can be found through the SVD
decomposition or the QR factorization of a random matrix.

This initialization strategy is known as orthogonal initialization.

A −1
1

A = SΛ Sn n −1

W

41 / 64

 is orthogonal.

0:00 / 0:03

A

―
Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 42 / 64

https://smerity.com/articles/2016/orthogonal_init.html

Exploding activations are also the reason why squashing non-linearity functions
(such as or sigmoids) are preferred in RNNs, since they avoid recurrent

states from exploding by upper bounding .

(At least when running the network forward.)

tanh
∣∣h ∣∣t

43 / 64

Some applications

44 / 64

Sentiment analysis

Document-level modeling for sentiment analysis (= text classi�cation),
with stacked, bidirectional and gated recurrent networks.

―
Credits: Duyu Tang et al, Document Modeling with Gated Recurrent Neural Network for Sentiment Classi�cation, 2015. 45 / 64

http://www.aclweb.org/anthology/D15-1167

Language models

Language models model language as a Markov chain, in which sentences are

sequences of words drawn repeatedly from

This is an instance of sequence synthesis, for which predictions are computed at
all time steps .

w1:T p(w ∣w).t 1:t−1

t

―
Credits: Alex Graves, Generating Sequences With Recurrent Neural Networks, 2013. 46 / 64

https://arxiv.org/abs/1308.0850

―
Credits: Max Woolf, 2018. 47 / 64

https://drive.google.com/file/d/1mMKGnVxirJnqDViH7BDJxFqWrsXlPSoK/view?usp=sharing

Sequence synthesis

The same generative architecture applies to any kind of sequences. E.g., sketch-

rnn-demo for sketches de�ned as sequences of strokes.

48 / 64

https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

Text-to-speech synthesis

―
Image credits: Shen et al, 2017. arXiv:1712.05884. 49 / 64

https://arxiv.org/abs/1712.05884

Lip-reading in the wild

―
Image credits: Chung et al, 2016. arXiv:1611.05358. 50 / 64

https://arxiv.org/abs/1611.05358

Lip Reading Sentences in the WildLip Reading Sentences in the Wild
Later bekijLater bekij…… DelenDelen

51 / 64

https://www.youtube.com/watch?v=5aogzAUPilE

Learning to control

A recurrent network playing Mario Kart.

MariFlow - Self-Driving Mario Kart w/Recurrent NMariFlow - Self-Driving Mario Kart w/Recurrent N……
Later bekijLater bekij…… DelenDelen

52 / 64

https://www.youtube.com/watch?v=Ipi40cb_RsI

Beyond sequences

53 / 64

Yann LeCun (Director of AI Research, Facebook, 2018)

An increasingly large number of people are de�ning the networks procedurally in
a data-dependent way (with loops and conditionals), allowing them to change
dynamically as a function of the input data fed to them. It's really very much like a
regular program, except it's parameterized.

54 / 64

Programs as neural nets
The topology of a recurrent network unrolled through time is not �xed, but
dynamic. It depends on:

the input sequence and its size

a graph construction algorithms which consumes input tokens in sequence
to add layers to the graph of computation.

55 / 64

This principle generalizes to:

arbitrarily structured data (e.g., sequences, trees, graphs)

arbitrary graph of computation construction algorithms that traverses these
structures (e.g., including for-loops or recursive calls).

56 / 64

Neural message passing

Even though the graph topology is dynamic, the unrolled computation is fully
differentiable. The program is trainable.

―
Credits: Henrion et al, 2017. 57 / 64

https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

Graph neural network for object detection in point clouds

―
Credits: Shi and Rajkumar, Point-GNN, 2020. 58 / 64

https://arxiv.org/abs/2003.01251

Quantum chemistry with graph networks

―
Credits: Schutt et al, 2017. 59 / 64

https://www.nature.com/articles/ncomms13890

Learning to simulate physics with graph networks

―
Credits: Sanchez-Gonzalez et al, 2020. 60 / 64

https://arxiv.org/abs/2002.09405

0:00 / 1:21

―
Credits: Sanchez-Gonzalez et al, 2020. 61 / 64

https://arxiv.org/abs/2002.09405

Neural computers

Any Turing machine can be simulated by a recurrent neural network
(Siegelmann and Sontag, 1995)

62 / 64

Networks can be coupled with memory storage to produce neural computers:

The controller processes the input sequence and interacts with the memory
to generate the output.

The read and write operations attend to all the memory addresses.

63 / 64

A differentiable neural computer being trained to store and recall dense binary
numbers. Upper left: the input (red) and target (blue), as 5-bit words and a 1 bit
interrupt signal. Upper right: the model's output

64 / 64

The end.

64 / 64

