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"Generative adversarial networks is the coolest idea
in deep learning in the last 20 years."

Yann LeCun, 2018.
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Today

Learn a model of the data.

e Generative adversarial networks
e Numerics of GANs
e Stateoftheart

e Applications
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Generative adversarial networks






A two-player game

In generative adversarial networks (GANs), the task of learning a generative
model is expressed as a two-player zero-sum game between two networks.

D u "
—> “real

What D wants

D
—> “fake”

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 6/68


https://fleuret.org/dlc/

The first network is a generatorg(-; 9) : Z — X, mapping a latent space

equipped with a prior distribution p(z) to the data space, thereby inducing a
distribution

x ~q(x;0) <z ~p(z),x = g(z;0).

The second network d(+; ¢) : X — [0, 1] is a classifier trained to distinguish
between true samples x ~ p(x) and generated samples x ~ g(x;6).
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For a fixed generator g, the classifier d can be trained by generating a two-class
training set

d = {(xlay — 1)7 ooy (XNay — 1)7 (g(zl; 9)7y — 0)7 e (g(zN; O)ay — 0)}3
where x; ~ p(x) and z; ~ p(z),and minimizing the cross-entropy loss
1 N
L(¢) = log d(xi; ¢) + log (1 — d(g(zi; 0); ¢))]

2N 4
1=1

N —Epi [l0g d(%; )] — Eupa) [log(1 — d(g(2;6); 8))] -

However, the situation is slightly more complicated since we also want to train g
to fool the discriminator. Fortunately, this is equivalent to maximizing d's loss.
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Let us consider the value function
V(¢7 0) — IE){Np(x) [log d(x; ¢)] + ]EZNp(Z) [log(l - d(g(z; 9)7 ¢))] :

e Forafixed g, V(qb, 0) is high if d is good at recognizing true from generated
samples.

e Ifdisthe best classifier given g,and if V is high, then this implies that the
generatoris bad at reproducing the data distribution.

e Conversely, g will be a good generative model if V' is low when d is a perfect
opponent.

Therefore, the ultimate goal is

0" = arg mgin max V(p,0).
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Learning process

In practice, the minimax solution is approximated using alternating stochastic
gradient descent:

0+ 0 —yVoV(s,0)
¢ ¢ +VyV(9,0),

where gradients are estimated with Monte Carlo integration.
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Data distribution
Model distribution
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Credits: Goodfellow et al, Generative Adversarial Networks, 2014.


https://arxiv.org/abs/1406.2661

Game analysis

For a generator g fixed at 6, the classifier d with parameters ¢j is optimal if and
only if

p(x)

7%, d(x; ) = q(x;0) +p(x)
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Therefore,

min max V (¢, 0) = mein V(gy,0)

0 ¢
= min 0 p(x) 0 41x;6)
= g Boxpo [1 ® 4(x:0) +p(X)] F Freato) [1 ® 4(x;0) + p(x)
— KL (p(x)Hp(X) +2<J(X; 9))
+ KL (q(x; H)HP(X) +2q(x; 6)) —log 4

= min 2 JSD(p(x)l[g(x; 0)) — log 4

where JSD is the Jensen-Shannon divergence.
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In summary,
0" = arg mgin max V(p,0)
= arg min JSD(p(x)||q(x; 0))-

Since JSD(p(x)||q(x; 0)) is minimum if and only if

p(x) = q(x;0)

for all x, this proves that the minimax solution corresponds to a generative model
that perfectly reproduces the true data distribution.
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GAN Lab
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https://poloclub.github.io/ganlab

7. N P
I A ¥

Results
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rial Networks, 2014.

Credits: Goodfellow et al, Generative Adversa


https://arxiv.org/abs/1406.2661

Credits: Radford et al, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015. 17/ 68


https://arxiv.org/abs/1511.06434

Credits: Radford et al, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015. 18/ 68


https://arxiv.org/abs/1511.06434

Open problems
Training a standard GAN often results in pathological behaviors:

e Oscillations without convergence: contrary to standard loss minimization,
alternating stochastic gradient descent has no guarantee of convergence.

e Vanishing gradients: when the classifier d is too good, the value function
saturates and we end up with no gradient to update the generator.

e Mode collapse: the generator g models very well a small sub-population,
concentrating on a few modes of the data distribution.

e Performance is also difficult to assess in practice.

- E - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Mode collapse (Metz et al, 2016)
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Cabinet of curiosities

While early results (2014-2016) were already impressive, a close inspection of the
fake samples distribution q(x; 9) often revealed fundamental issues highlighting
architectural limitations.
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Cherry-picks

Credits: lan Goodfellow, 2016. 21/68



Problems with counting

Credits: lan Goodfellow, 2016. 22/ 68



Problems with perspective

Credits: lan Goodfellow, 2016. 23/ 68



Problems with global structures

Credits: lan Goodfellow, 2016. 24/ 68



Numerics of GANs
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Solving for saddle points is different from gradient descent.

e Minimization of scalar functions yields conservative vector fields.

e Min-max saddle point problems may yield non-conservative vector fields.

Credits: Ferenc Huszar, GANs are Broken in More than One Way, 2017.


https://www.inference.vc/my-notes-on-the-numerics-of-gans/

Following the notations of Mescheder et al (2018), the training objective for the
two players can be described by an objective function of the form

L(0,¢) = Ey) [£(d(g(2;0);9))] + Epxy [f(—d(x59))],

where the goal of the generator is to minimizes the loss, whereas the
discriminator tries to maximize it.

If f(¢) = —log(1 + exp(—t)), then we recover the original GAN objective
(assuming that d outputs the logits).
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Training algorithms can be described as fixed points algorithms that apply some
operator F}, (0, ¢) to the parameters values (0, ¢).

e Forsimultaneous gradient descent,

Fh(‘gv QS) — (07 ¢) + hv(@, QS)

where v (6, ¢) denotes the gradient vector field

0(6,) = ( 329(( ?’)

and h is a scalar stepsize.

e Similarly, alternating gradient descent can be described by an operator
Fy = Fyp, o Fi ,where F1 j, and F3 j, perform an update for the generator
and discriminator, respectively.
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Local convergence near an equilibrium point
Let us consider the Jacobian Jg, (6%, ¢*) at the equilibrium (6, ¢*):

o if Jp, (0, ¢") haseigenvalues with absolute value bigger than 1, the
training will generally not converge to (6%, ¢*).

o ifall eigenvalues have absolute value smaller than 1, the training will
convergeto (0%, ¢*).

o if all eigenvalues values are on the unit circle, training can be convergent,
divergent or neither.

Mescheder et al (2017) show that all eigenvalues can be forced to remain within
the unit ball if and only if the stepsize h is made sufficiently small.
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stable unstable

h=1.0

Discrete system: divergence (h = 1, too large).

Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018.


https://arxiv.org/abs/1801.04406
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Discrete system: convergence (h = 0.5, small enough).

Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018.


https://arxiv.org/abs/1801.04406

For the (idealized) continuous system

(660) - (eers))

which corresponds to training GANs with infinitely small learning rate h — 0:

e if all eigenvalues of the Jacobian v’ (6%, ¢* ) at a stationary point (6%, ¢*)
have negative real-part, the continuous system converges locally to

(6%, 9%);
e ifv' (0%, ") has eigenvalues with positive real-part, the continuous system
is not locally convergent.

o ifall eigenvalues have zero real-part, it can be convergent, divergent or
neither.
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https://arxiv.org/abs/1801.04406
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Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018.


https://arxiv.org/abs/1801.04406

On the Dirac-GAN toy problem, eigenvalues are { — f'(0)3, + f'(0)i }. Therefore
convergence of the standard GAN learning procedure is not guaranteed.

Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 35/68


https://arxiv.org/abs/1801.04406

Taming the vector field

A penalty on the squared norm of the gradients of the discriminator results in the
regularization

Ry (#) = 3 Expio [|IVxd(x; 9) ]

The resulting eigenvaluesare { —2 &+ /% — f/(0)? }. Therefore, fory > 0, all
eigenvalues have negative real part, hence training is locally convergent!

Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 36/68


https://arxiv.org/abs/1801.04406

Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 37/ 68


https://arxiv.org/abs/1801.04406

Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 38/68


https://arxiv.org/abs/1801.04406
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Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018.


https://arxiv.org/abs/1801.04406

State of the art



lan Goodfellow
e {@goodfellow_ian
4.5 years of GAN progress on face
generation. arxiv.org/abs/1406.2661
arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536
arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948

2014
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Progressive growing of GANs

Wasserstein GANs as baseline (Arjovsky et al, 2017) +
Gradient Penalty (Gulrajani, 2017) + (quite a few other tricks)
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(Karras et al,2017)
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Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 x 16 images (a) to 32 x 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight o increases linearly from 0 to 1. Here| 2x
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
represents a layer that projects feature vectors to RGB colors and
the reverse; both use 1 x 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.
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(Karras et al,2017)
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. Progressive Growing of GANs for Improved ...
' e =

. i

(Karras et al,2017)
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https://www.youtube.com/watch?v=XOxxPcy5Gr4

BigGANSs

Self-attention GANs as baseline (Zhang et al, 2018) + Hinge loss objective (Lim
and Ye, 2017; Tran et al, 2017) + Class information to g with class-conditional
batchnorm (de Vries et al, 2017) + Class information to d with projection (Miyato
and Koyama, 2018) + Half the learning rate of SAGAN, 2 d-steps per g-step +
Spectral normalization for both g and d + Orthogonal initialization (Saxe et al,
2014) + Large minibatches (2048) + Large number of convolution filters + Shared
embedding and hierarchical latent spaces + Orthogonal regularization +
Truncated sampling + (quite a few other tricks)
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(Brock et al, 2018)
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https://www.youtube.com/watch?v=YY6LrQSxIbc

StyleGAN (v1)

Progressive GANs as baseline (Karras et al, 2017) + Non-saturating loss instead of
WGAN-GP + R regularization (Mescheder et al, 2018) + (quite a few other

tricks)
+
Latent z € Z Latent z € Z . Noise
Synthesis network g
Normaliz
Mapping

Fully-connected network f

PixelNorm

PixelNorm

8x8

(a) Traditional (b) Style-based generator



. A Style-Based Generator Architecture for G... 0 ~»

Later bekij... Delen
e

Coarse styles
(42- )

Middle styles
(16% =327

Fine styles
(B4*—10247%)

(Karras et al,2018)
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https://www.youtube.com/watch?v=kSLJriaOumA

The StyleGAN generator g is so powerful that it can re-generate arbitrary faces.
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StyleGAN (v2,v3)

» 0:00/0:28 ) » 0:00/0:28

(Karras et al,2019; Karras et al, 2021)
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Figure 2. Our approach uses a convolutional VOGAN to learn a codebook of context-rich visual parts, whose composition is subsequently
modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a
patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of
convolutional approaches to transformer based high resolution image synthesis.
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(Esser et al, 2021)
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(Esser et al,2021)
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Applications



Image-to-image translation

Monet £_ Photos Zebras T Horses Summer _ Winter

zebra — horse ]

horse — zebra

Photograph ' Monet Van Gogh Czanne Ukiyo—er

CycleGANs (Zhu et al, 2017)
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@ High-Resolution Image Synthesis and Sem... 0 ~»

Later bekij... Delen

High-resolution image synthesis (Wang et al, 2017)
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https://www.youtube.com/watch?v=3AIpPlzM_qs

GauGAN: Changing sketches into photorealistic masterpieces (NVIDIA, 2019)
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https://www.youtube.com/watch?v=p5U4NgVGAwg

. Introduction of GauGAN2 by NVIDIA Research 0

GauGANZ2 (NVIDIA, 2021)
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https://www.youtube.com/watch?v=p9MAvRpT6Cg

Living portraits / deepfakes

(o)

Content loss

Landmarks Generator Synthesized
=) DI
1 / "’
/ , i Realism score
' 7
Match loss

RGB & landmarks Ground truth
marks) to the embedding vectors, which contain pose-independent information. The generator network maps input face
landmarks into output frames through the set of convolutional layers, which are modulated by the embedding vectors via
average the resulting embeddings and use them to predict adaptive parameters of the generator. Then, we pass the landmarks
of a different frame through the generator, comparing the resulting image with the ground truth. Our objective function

= \2‘
" \ s
Discriminator
- — ®
Figure 2: Our meta-learning architecture involves the embedder network that maps head images (with estimated face land-
adaptive instance normalization. During meta-learning, we pass sets of frames from the same video through the embedder,
includes perceptual and adversarial losses, with the latter being implemented via a conditional projection discriminator.

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
(Zakharov et al, 2019)
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Living portraits

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
(Zakharov et al, 2019)
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https://www.youtube.com/watch?v=rJb0MDrT3SE

Captioning

W‘I .. - i_!

a tennis player gets two men dressed in a tennis player hits the a male tennis playerin ~ a man in white is about
ready to return a serve costumes and holding ball during a match action on the court to serve a tennis ball

tennis rackets

a laptop and a desktop a person is working on a a cup of coffee sitting next  a laptop computer sitting a picture of a computer on
computer sit on a desk compulter screen to a laptop on top of a desk next to a a desk

(Shetty et al,2017)



Text-to-image synthesis

IFC with reshape I Upsampling Iloining I Residual IConv3x3

Generators in a tree-like structure

ax4 64x64 128x128
X2N,

128x128x3

Unconditional
loss

Fig. 2: The overall framework of our proposed StackGAN-v2 for the conditional image synthesis task. ¢ is the vector of conditioning variables
which can be computed from the class label, the text description, etc.. N, and Ny are the numbers of channels of a tensor.

(Zhanget al,2017)
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A small bird A small yellow  This small bird

The bird is A bird witha This small with varying bird with a has a white
Text This birdisred  short and medium orange  black bird has shades of black crown breast, light
description and brown in stubby with bill white body  a short, slightly  brown with and a short grey head, and
P color, with a yellow on its gray wingsand  curved billand ~ white underthe  black pointed black wings
stubby beak body webbed feet long legs eyes and tail
64x64
GAN-INT-CLS

128x128
GAWWN
256x256

StackGAN-v1

Fig. 3: Example results by our StackGAN-vl, GAWWN [29], and GAN-INT-CLS [?1] conditioned on text descriptions from CUB test set.

(Zhanget al,2017)
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Lepip ("Surprised".-)

g |
L, oym T g

N s B I [

Figure 2. The architecture of our text-guided mapper (using the text prompt “surprised”, in this example). The source image (left) is
inverted into a latent code w. Three separate mapping functions are trained to generate residuals (in blue) that are added to w to yield the
target code, from which a pretrained StyleGAN (in green) generates an image (right), assessed by the CLIP and identity losses.

StyleGAN

“Emma Stone™ “Mohawk hairstyle” “Without makeup” “Cute cat” “Lion” “Gothic church”

StyleCLIP (Patashnik et al, 2021)
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Music generation
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Figure 5: System diagram of the proposed MuseGAN model for multi-track sequential data generation.
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MuseGAN (Dong et al, 2018)



Accelerating scientific simulators
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Figure 8.37: Composite conditional CaloGAN generator (7, with three LAGAN-like streams connected by attentional layer- I|_ E
to-layer dependence. mZE
r-- o o
W
INPUTS \OUTPUTS e i
Concatenation o=
article
7t _'.'.,..:.....sa
——
{ fake
- vs.l & 10° %
real =
- =
4 - i | - Z
w
- © ™ = = 100 §
Minibatch s
Discrimination 2| = B el || =] - .
Absolute O Mg | | S | | === | | Tmg - °
Difference
= —rA>g?7-
1 |particle \ Emt—l
1 ay \ I 4 reco.
s E — energy

Figure 8.38: Composite conditional CaloGAN discriminator IJ, with three LAGAN-like streams and additional domain-

specific energy calculations included in the final feature space.
Learning particle physics (Paganini et al,2017)
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N-body simulation samples

Figure 1: Samples from N-body simulation and from GAN for the box size of 500 Mpe. Note
that the transformation in Equation 3.1 with o = 20 was applied to the imapges shown above
for better clarity.

Learning cosmological models (Rodriguez et al, 2018)
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The end.
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