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Yann LeCun, 2018.

"Generative adversarial networks is the coolest idea
in deep learning in the last 20 years."
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A two-player game

In generative adversarial networks (GANs), the task of learning a generative
model is expressed as a two-player zero-sum game between two networks.

―
Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 6 / 68

https://fleuret.org/dlc/


The �rst network is a generator , mapping a latent space

equipped with a prior distribution  to the data space, thereby inducing a

distribution

The second network  is a classi�er trained to distinguish

between true samples  and generated samples .

g(⋅; θ) : Z → X
p(z)

x ∼ q(x; θ) ⇔ z ∼ p(z),x = g(z; θ).

d(⋅;ϕ) : X → [0, 1]
x ∼ p(x) x ∼ q(x; θ)
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For a �xed generator , the classi�er  can be trained by generating a two-class

training set

where  and , and minimizing the cross-entropy loss

However, the situation is slightly more complicated since we also want to train 

to fool the discriminator. Fortunately, this is equivalent to maximizing 's loss.

g d

d = {(x , y = 1), ..., (x , y = 1), (g(z ; θ), y = 0), ..., (g(z ; θ), y = 0)},1 N 1 N

x ∼ p(x)i z ∼ p(z)i

L(ϕ) = − log d(x ;ϕ) + log 1 − d(g(z ; θ);ϕ)
2N
1

i=1

∑
N

[ i ( i )]

≈ −E log d(x;ϕ) − E log(1 − d(g(z; θ);ϕ)) .x∼p(x) [ ] z∼p(z) [ ]

g

d
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Let us consider the value function

For a �xed ,  is high if  is good at recognizing true from generated

samples.

If  is the best classi�er given , and if  is high, then this implies that the

generator is bad at reproducing the data distribution.

Conversely,  will be a good generative model if  is low when  is a perfect

opponent.

Therefore, the ultimate goal is

V (ϕ, θ) = E log d(x;ϕ) + E log(1 − d(g(z; θ);ϕ)) .x∼p(x) [ ] z∼p(z) [ ]

g V (ϕ, θ) d

d g V

g V d

θ = arg V (ϕ, θ).∗

θ
min

ϕ
max
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Learning process

In practice, the minimax solution is approximated using alternating stochastic
gradient descent:

where gradients are estimated with Monte Carlo integration.

θ

ϕ

← θ − γ∇ V (ϕ, θ)θ

← ϕ+ γ∇ V (ϕ, θ),ϕ
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―
Credits: Goodfellow et al, Generative Adversarial Networks, 2014. 11 / 68

https://arxiv.org/abs/1406.2661


Game analysis

For a generator  �xed at , the classi�er  with parameters  is optimal if and

only if

g θ d ϕθ
∗

∀x, d(x;ϕ ) = .θ
∗

q(x; θ) + p(x)
p(x)
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Therefore,

where  is the Jensen-Shannon divergence.

V (ϕ, θ) = V (ϕ , θ)
θ
min

ϕ
max

θ
min θ

∗

= E log + E log
θ
min x∼p(x) [

q(x; θ) + p(x)
p(x)

] x∼q(x;θ) [
q(x; θ) + p(x)

q(x; θ)
]

= KL p(x)∣∣
θ
min (

2
p(x) + q(x; θ)

)

+KL q(x; θ)∣∣ − log 4(
2

p(x) + q(x; θ)
)

= 2 JSD(p(x)∣∣q(x; θ)) − log 4
θ
min

JSD
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In summary,

Since  is minimum if and only if

for all , this proves that the minimax solution corresponds to a generative model

that perfectly reproduces the true data distribution.

θ∗ = arg V (ϕ, θ)
θ
min

ϕ
max

= arg JSD(p(x)∣∣q(x; θ)).
θ
min

JSD(p(x)∣∣q(x; θ))

p(x) = q(x; θ)

x
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(demo)
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https://poloclub.github.io/ganlab


Results

―
Credits: Goodfellow et al, Generative Adversarial Networks, 2014. 16 / 68

https://arxiv.org/abs/1406.2661


―
Credits: Radford et al, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015. 17 / 68

https://arxiv.org/abs/1511.06434


―
Credits: Radford et al, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015. 18 / 68

https://arxiv.org/abs/1511.06434


Open problems

Training a standard GAN often results in pathological behaviors:

Oscillations without convergence: contrary to standard loss minimization,
alternating stochastic gradient descent has no guarantee of convergence.

Vanishing gradients: when the classi�er  is too good, the value function

saturates and we end up with no gradient to update the generator.

Mode collapse: the generator  models very well a small sub-population,

concentrating on a few modes of the data distribution.

Performance is also dif�cult to assess in practice.

Mode collapse (Metz et al, 2016)

d

g

19 / 68



Cabinet of curiosities

While early results (2014-2016) were already impressive, a close inspection of the

fake samples distribution  often revealed fundamental issues highlighting

architectural limitations.

q(x; θ)
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Cherry-picks

―
Credits: Ian Goodfellow, 2016. 21 / 68



Problems with counting

―
Credits: Ian Goodfellow, 2016. 22 / 68



Problems with perspective

―
Credits: Ian Goodfellow, 2016. 23 / 68



Problems with global structures

―
Credits: Ian Goodfellow, 2016. 24 / 68



Numerics of GANs
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Solving for saddle points is different from gradient descent.

Minimization of scalar functions yields conservative vector �elds.

Min-max saddle point problems may yield non-conservative vector �elds.

―
Credits: Ferenc Huszár, GANs are Broken in More than One Way, 2017. 26 / 68

https://www.inference.vc/my-notes-on-the-numerics-of-gans/


Following the notations of Mescheder et al (2018), the training objective for the
two players can be described by an objective function of the form

where the goal of the generator is to minimizes the loss, whereas the
discriminator tries to maximize it.

If , then we recover the original GAN objective

(assuming that  outputs the logits).

L(θ,ϕ) = E f(d(g(z; θ);ϕ)) + E f(−d(x;ϕ)) ,p(z) [ ] p(x) [ ]

f(t) = − log(1 + exp(−t))
d
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Training algorithms can be described as �xed points algorithms that apply some
operator  to the parameters values .

For simultaneous gradient descent,

where  denotes the gradient vector �eld

and  is a scalar stepsize.

Similarly, alternating gradient descent can be described by an operator 

, where  and  perform an update for the generator

and discriminator, respectively.

F (θ,ϕ)h (θ,ϕ)

F (θ,ϕ) = (θ,ϕ) + hv(θ,ϕ)h

v(θ,ϕ)

v(θ,ϕ) := (
− (θ,ϕ)∂θ
∂L

(θ,ϕ)∂ϕ
∂L )

h

F = F ∘ Fh 2,h 1,h F1,h F2,h
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Local convergence near an equilibrium point

Let us consider the Jacobian  at the equilibrium :

if  has eigenvalues with absolute value bigger than 1, the

training will generally not converge to .

if all eigenvalues have absolute value smaller than 1, the training will
converge to .

if all eigenvalues values are on the unit circle, training can be convergent,
divergent or neither.

Mescheder et al (2017) show that all eigenvalues can be forced to remain within
the unit ball if and only if the stepsize  is made suf�ciently small.

J (θ ,ϕ )Fh

∗ ∗ (θ ,ϕ )∗ ∗

J (θ ,ϕ )Fh

∗ ∗

(θ ,ϕ )∗ ∗

(θ ,ϕ )∗ ∗

h
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Discrete system: divergence ( , too large).h = 1

―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 30 / 68

https://arxiv.org/abs/1801.04406


Discrete system: convergence ( , small enough).h = 0.5

―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 31 / 68

https://arxiv.org/abs/1801.04406


For the (idealized) continuous system

which corresponds to training GANs with in�nitely small learning rate :

if all eigenvalues of the Jacobian  at a stationary point 

have negative real-part, the continuous system converges locally to 

;

if  has eigenvalues with positive real-part, the continuous system

is not locally convergent.

if all eigenvalues have zero real-part, it can be convergent, divergent or
neither.

= ,(
(t)θ̇

(t)ϕ̇
) (

− (θ,ϕ)∂θ
∂L

(θ,ϕ)∂ϕ
∂L )

h→ 0

v (θ ,ϕ )′ ∗ ∗ (θ ,ϕ )∗ ∗

(θ ,ϕ )∗ ∗

v (θ ,ϕ )′ ∗ ∗
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Continuous system: divergence.

―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 33 / 68

https://arxiv.org/abs/1801.04406


Continuous system: convergence.

―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 34 / 68

https://arxiv.org/abs/1801.04406


On the Dirac-GAN toy problem, eigenvalues are . Therefore

convergence of the standard GAN learning procedure is not guaranteed.

{−f (0)i, +f (0)i}′ ′

―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 35 / 68

https://arxiv.org/abs/1801.04406


Taming the vector �eld

A penalty on the squared norm of the gradients of the discriminator results in the
regularization

The resulting eigenvalues are . Therefore, for , all

eigenvalues have negative real part, hence training is locally convergent!

R (ϕ) = E ∣∣∇ d(x;ϕ)∣∣ .1 2
γ

x∼p(x) [ x
2]

{− ± }2
γ − f (0)4

γ ′ 2 γ > 0

―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 36 / 68

https://arxiv.org/abs/1801.04406


―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 37 / 68

https://arxiv.org/abs/1801.04406


―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 38 / 68

https://arxiv.org/abs/1801.04406


―
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 39 / 68

https://arxiv.org/abs/1801.04406


State of the art
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Progressive growing of GANs

Wasserstein GANs as baseline (Arjovsky et al, 2017) + 
Gradient Penalty (Gulrajani, 2017) + (quite a few other tricks)

+

(Karras et al, 2017)
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(Karras et al, 2017)
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Progressive Growing of GANs for Improved Progressive Growing of GANs for Improved ……
Later bekijLater bekij…… DelenDelen

(Karras et al, 2017)
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https://www.youtube.com/watch?v=XOxxPcy5Gr4


BigGANs

Self-attention GANs as baseline (Zhang et al, 2018) + Hinge loss objective (Lim
and Ye, 2017; Tran et al, 2017) + Class information to  with class-conditional

batchnorm (de Vries et al, 2017) + Class information to  with projection (Miyato

and Koyama, 2018) + Half the learning rate of SAGAN, 2 -steps per -step +

Spectral normalization for both  and  + Orthogonal initialization (Saxe et al,

2014) + Large minibatches (2048) + Large number of convolution �lters + Shared
embedding and hierarchical latent spaces + Orthogonal regularization +

Truncated sampling + (quite a few other tricks)

(Brock et al, 2018)

g

d

d g

g d
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The 1000 ImageNet Categories inside of BiThe 1000 ImageNet Categories inside of Bi……
Later bekijLater bekij…… DelenDelen

(Brock et al, 2018)
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https://www.youtube.com/watch?v=YY6LrQSxIbc


StyleGAN (v1)

Progressive GANs as baseline (Karras et al, 2017) + Non-saturating loss instead of
WGAN-GP +  regularization (Mescheder et al, 2018) + (quite a few other

tricks)

+

R1
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A Style-Based Generator Architecture for GA Style-Based Generator Architecture for G……
Later bekijLater bekij…… DelenDelen

(Karras et al, 2018)
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https://www.youtube.com/watch?v=kSLJriaOumA


The StyleGAN generator  is so powerful that it can re-generate arbitrary faces.

   

g
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StyleGAN (v2, v3)

 

(Karras et al, 2019; Karras et al, 2021)

0:00 / 0:28 0:00 / 0:28
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VQGAN

(Esser et al, 2021)
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(Esser et al, 2021)
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Applications
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Image-to-image translation

CycleGANs (Zhu et al, 2017)
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High-Resolution Image Synthesis and SemHigh-Resolution Image Synthesis and Sem……
Later bekijLater bekij…… DelenDelen

High-resolution image synthesis (Wang et al, 2017)

57 / 68

https://www.youtube.com/watch?v=3AIpPlzM_qs


GauGAN: Changing Sketches into PhotorealGauGAN: Changing Sketches into Photoreal……
Later bekijLater bekij…… DelenDelen

GauGAN: Changing sketches into photorealistic masterpieces (NVIDIA, 2019)
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https://www.youtube.com/watch?v=p5U4NgVGAwg


Introduction of GauGAN2 by NVIDIA ResearchIntroduction of GauGAN2 by NVIDIA Research
Link kopiërLink kopiër……

GauGAN2 (NVIDIA, 2021)
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https://www.youtube.com/watch?v=p9MAvRpT6Cg


Living portraits / deepfakes

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
(Zakharov et al, 2019)
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Excerpt from Few-Shot Adversarial LearninExcerpt from Few-Shot Adversarial Learnin……
Later bekijLater bekij…… DelenDelen

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
(Zakharov et al, 2019)
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https://www.youtube.com/watch?v=rJb0MDrT3SE


Captioning

(Shetty et al, 2017)
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Text-to-image synthesis

(Zhang et al, 2017)
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(Zhang et al, 2017)
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StyleCLIP (Patashnik et al, 2021)
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Music generation

MuseGAN (Dong et al, 2018)

0:000:00 / 3:15/ 3:15
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Accelerating scienti�c simulators

Learning particle physics (Paganini et al, 2017)
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Learning cosmological models (Rodriguez et al, 2018)
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The end.
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