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Today

How to make decisions under uncertainty, while learning about the

environment?

e Reinforcement learning (RL)

o Passive RL
o Model-based estimation
o Model-free estimation
o Direct utility estimation

o Temporal-difference learning

o Active RL
o Model-based learning
o Q-Learning

o Generalizing across states

Image credits: CS188, UC Berkeley.
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MDPs

A short recap.
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MDPs

A Markov decision process (MDP) is a tuple (S, A, P, R) such that:

e Sisasetof states s;

A is a set of actions a;

P is a (stationary) transition model such that P(s'|s, a) denotes the
probability of reaching state s’ if action a is done in state s;

Ris areward function that maps immediate (finite) reward values R(s)
obtained in states s.

(0 < v < 1isthediscount factor)



-~

Environment

o

s ~ P(s'|s,a)
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Remarks

« Although MDPs generalize to continuous state-action spaces, we assume
in this lecture that both & and A are discrete and finite.

e The formalism we use to define MDPs is not unique. A quite well-
established and equivalent variant is to define the reward function with
respect to a transition (s, a, s'),i.e. R(s,a, s"). This results in new (but
equivalent) formulations of the algorithms covered in Lecture 8.



The Bellman equation

The utility of a state is the immediate reward for that state, plus the expected
discounted utility of the next state, assuming that the agent chooses the
optimal action:

V(s) = R(s) + ’ymc?xz P(s'|s,a)V(s).

How to be optimal:
Step 1: Take correct first action

Keep being optimal

Image credits: CS188, UC Berkeley.
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Value iteration

The value iteration algorithm provides a fixed-point iteration procedure for
computing the state utilities V'(s):

o Let V;(s) be the estimated utility value for s at the é-th iteration step.

e The Bellman update consists in updating simultaneously all the estimates
to make them locally consistent with the Bellman equation:

Via(s) = R(s) + ymax Y P(s'|s, a)Vi(s),

« Repeat until convergence.
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Policy iteration

The policy iteration algorithm directly computes the policy (instead of state
values). It alternates the following two steps:

« Policy evaluation: given 7;, calculate V; = V'™ i.e. the utility of each state if
;IS executed:

Vi(s) = R(s) +v ) P(s'|s,mi(s))Vi(s).

« Policy improvement: calculate a new policy ;1 using one-step look-ahead
based on V;:

m;11(8) = arg max Z P(s'|s,a)V;(s').
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Reinforcement learning
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» 0:00/0:

Video credits: Megan Hayes, @YAWScience, 2020. 12/58


https://twitter.com/PigMegan
https://twitter.com/YAWScience/status/1304199719036444672

» 0:00/0:

Video credits: Megan Hayes, @YAWScience, 2020. 13/58


https://twitter.com/PigMegan
https://twitter.com/YAWScience/status/1304199719036444672

What just happened?

e This wasn't planning, it was reinforcement learning!

e There was an MDP, but the chicken couldn't solve it with just computation.

e The chicken needed to actually act to figure it out.

Important ideas in reinforcement learning that came up

e Exploration: you have to try unknown actions to get information.

Exploitation: eventually, you have to use what you know.

Regret: even if you learn intelligently, you make mistakes.

Sampling: because of chance, you have to try things repeatedly.

Difficult: learning can be much harder than solving a known MDP,
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Reinforcement learning

We still assume a Markov decision process (S, A, P, R) such that:

e Sisasetof states s;
e Ais asetofactions a;

o P s a(stationary) transition model such that P(s'|s, a) denotes the
probability of reaching state s’ if action a is done in state s;

« Risareward function that maps immediate (finite) reward values R(s)
obtained in states s.

Our goal is find the optimal policy 7w (s).
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New twist

The transition model P(s'|s, a) and the reward function R(s) are unknown.

e We do not know which states are good nor what actions do!

e We must observe or interact with the environment in order to jointly learn
these dynamics and act upon them.

~

Environment

777
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Passive RL

T f

Ee—

Goal: policy evaluation

e The agent's policy 7 is fixed.
« Its goal is to learn the utilities V™ (s).

e The learner has no choice about what actions to take. It just executes the
policy and learns from experience.

Image credits: CS188, UC Berkeley. 17/58
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The agent executes a set of trials (or episodes) in the environment using policy
7. Trial trajectories (s, 7, a,s"), (s',7',a’,s"), ... might look like this:

e Trial 1: (B, —1,east,C), (C, —1, east, D), (D, +10, exit, 1)
(B, —1,east,C), (C, —1,east, D), (D, +10, exit, 1)

e Trial 3: (E, —1,north, C'), (C, —1, east, D), (D, +10, exit, 1)
(E,

—1,north, C), (C, —1, east, A), (4, —10, exit, 1)

e Trial 2:

e Trial 4:

18/5



Model-based estimation

A model-based agent estimates approximate transition and reward models P
and R based on experiences and then evaluates the resulting empirical MDP.

e Step 1:Learn an empirical MDP.
o Estimate P(S’ ’S, a) from empirical samples (8, a, S’) or with supervised learning.
o Discover each R(s) foreach s.

e Step 2: Evaluate 7 using P and R e.g.as

Image credits: CS188, UC Berkeley. 19/58
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Example

Policy 7T Trajectories:

A

Learned transition model P:

(C|B,east) =1
(D|C,east) = 0.75
(A|C,east) = 0.25
)

Y

(B, —1,east,C), (C, —1,east, D), (D, +10, exit, 1)
(B, —1,east, C), (C, D

(E, —1,north, C), (C, —1, east, D), (D, +10, exit, | )
(E, —1,north, C), (C, —1, east, A), (4, —10, exit, 1)

—1,east, D), (D, +10, exit, 1)

Learned reward :

(B) = —1
(€)= -1
(D) = +10
)

5 S B
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Model-free estimation

Can we learn V'™ in a model-free fashion, without explicitly modeling the
environment, i.e. without learning Pand R?
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Direct utility estimation

(a.k.a. Monte Carlo evaluation)

The utility V™ (s) of state s is the expected total reward from the state
onward (called the expected reward-to-go)

VT(s)=E|> ~+'R(s:)

So=S
Each trial provides a sample of this quantity for each state visited.

Therefore, at the end of each sequence, one can update a sample average
V7™ (s) by:
o computing the observed reward-to-go for each state;

o updating the estimated utility for that state, by keeping a running average.

In the limit of infinitely many trials, the sample average will converge to the
true expectation.
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Example (v = 1)

Policy 7T Trajectories:

(B, —1,east,C), (C, —1,east, D), (D, +10, exit, 1)
(B, —1,east, C), (C, —1,east, D), (D, +10, exit, 1)
(E, —1,north, C), (C, —1, east, D), (D, 410, exit, 1)
(E, —1,north, C), (C, —1, east, A), (A, —10, exit, 1)

Vﬂ(s):

If both B and E go to C' under T,
how can their values be different?




Unfortunately, direct utility estimation misses the fact that the state values
V™ (s) are not independent, since they obey the Bellman equations for a fixed

policy:
V7 (s) = R(s) + 72 P(s'|s,m(s))V"(s").

Therefore, direct utility estimation misses opportunities for learning and takes a
long time to learn.
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Temporal-difference learning

Temporal-difference (TD) learning consists in updating V7 (s) each time the
agent experiences a transition (s, = R(s),a = 7(s), s').

S
n(s)

s, 1i(s)

A S

When a transition from s to s’ occurs, the temporal-difference update steers
V7™ (s) to better agree with the Bellman equations for a fixed policy, i.e.

V() « V™(s) + alr + V7 (s') = V7(s))

~~

temporal difference error

where avis the learning rate parameter.
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Alternatively, the TD-update can be viewed as a single gradient descent step on
the squared error between the target r + V™ (") and the prediction V7 (s).
(More later.)
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Exponential moving average

The TD-update can equivalently be expressed as the exponential moving
average

V™(s) < (1 —a)V™(s) + a(r + vV (s")).
Intuitively,

e this makes recent samples more important;

e this forgets about the past (distant past values were wrong anyway).
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Example (y = 1, = 0.5)

Transition: (B, —1, east, C')

TD-update:

VT (B) < V™" (B) + a(R(B)+~yV™(C) — V™(B))
+—0+4+0.5(-1+0-0)
+— —0.5
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Transition: (C', —1, east, D)

TD-update:

VT(C) <« V™ (C)+ a(R(C)+~4V™(D) - V™ (C))
+—0+4+0.5(-1+8-0)
+— 3.5
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Convergence

« Notice that the TD-update involves only the observed successor s/,
whereas the actual Bellman equations for a fixed policy involves all possible
next states. Nevertheless, the average value of V7 () will converge to the
correct value.

 If we change a from a fixed parameter to a function that decreases as the
number of times a state has been visited increases, then V™ (s) will itself
converge to the correct value.
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Active RL

Goal: learn an optimal policy

e The agent's policy is not fixed anymore.
e Its goal is to learn the optimal policy 7m* or the state values V (s).
e The learner makes choices!

e Fundamental trade-off: exploration vs. exploitation.

Image credits: CS188, UC Berkeley. 31/58
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Model-based learning

The passive model-based agent can be made active by instead finding the
optimal policy * for the empirical MDP.

For example, having obtained a utility function V' that is optimal for the learned
model (e.g., with Value Iteration), the optimal action by one-step look-ahead to
maximize the expected utility is

7" (s) = arg max Z P(s'|s,a)V(s).
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RMS error, policy loss
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Figure 21.6  Performance of a greedy ADP agent that executes the action recommended
by the optimal policy for the learned model. (a) RMS error in the utility estimates averaged
over the nine nonterminal squares. (b) The suboptimal policy to which the greedy agent
converges in this particular sequence of trials.

The agent does not learn the true utilities or the true optimal policy!



The resulting policy is greedy and suboptimal:

« The learned transition and reward models P and R are not the same as the
true environment since they are based on the samples obtained by the
agent's policy, which biases the learning.

e Therefore, what is optimal in the learned model can be suboptimal in the
true environment.
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Exploration

Actions do more than provide rewards according to the current learned model.
They also contribute to learning the true environment.

This is the exploitation-exploration trade-off:

» Exploitation: follow actions that maximize the rewards, under the current
learned model;

e Exploration: follow actions to explore and learn about the true environment.

Image credits: CS188, UC Berkeley. 35/58


https://inst.eecs.berkeley.edu/~cs188/

How to explore?

Simplest approach for forcing exploration: random actions (e-greedy).

« With a (small) probability €, act randomly.
« With a (large) probability (1 — €), follow the current policy.

e-greedy does eventually explore the space, but keeps trashing around once
learning is done.



When to explore?

Better idea: explore areas whose badness is not (yet) established, then stop
exploring.

Formally, let V' (s) denote an optimistic estimate of the utility of state s and let
N (s, a) be the number of times actions a has been tried in s.

For Value Iteration, the update equation becomes

Vit1(s) = R(s) + ymax f(Q_ P(s'ls,a)V;* (s'), N(s, a)),

where f(v,n) is called the exploration function.

The function f(v, n) should be increasing in v and decreasing in . A simple
choiceis f(v,n) = v+ K/n.
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Model-free learning

Although temporal difference learning provides a way to estimate V" in a
model-free fashion, we would still have to learn a model P(s’|s, a) to choose an
action based on a one-step look-ahead.

Image credits: CS188, UC Berkeley. 38/58
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Détour: Q-values

« The state-value V() of the state
s is the expected utility starting
in s and acting optimally.

e The state-action-value Q(s, a) of
the g-state (s, a) is the expected
utility starting out having taken
action a from s and thereafter
acting optimally.

sisa
state

(s,a)isa
g-state

(s,a,5")is a
transition
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Optimal policy
The optimal policy 7m* (s) can be defined in terms of either V' (s) or Q(s, a):
7*(s) = arg max Z P(s'|s,a)V(s")

= arg max Q(s, a)
a

Image credits: CS188, UC Berkeley. 40/ 58
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Bellman equations for )

Since V(s) = max, Q(s, a), the Q-values Q(s, a) are recursively defined as
Q(s,a) = R(s) +v ) _ P(s'|s,a)V(s)

= R(s) + 'yz P(s'|s,a) max Q(s',a).

8/

As for value iteration, the last equation can be used as an update equation for a
fixed-point iteration procedure that calculates the Q-values Q(s, a). However, it
still requires knowing P(s'|s, a)!
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Q-Learning

The state-action-values (s, a) can be learned in a model-free fashion using a
temporal-difference method known as Q-Learning.

Q-Learning consists in updating Q(s, a) each time the agent experiences a
transition (s, = R(s),a, s").

The update equation for TD Q-Learning is

Q(s,a) + Q(s,a) + a(r + 7y max Q(s',ad') — Q(s,a)).

Since m*(s) = arg max, (s, a), a TD agent that learns Q-values does not
need a model of the form P(s'|s, a), neither for learning nor for action
selection!
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function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal r/
persistent: (), atable of action values indexed by state and action, initially zero
N,q, a table of frequencies for state—action pairs, initially zero
s, a, r, the previous state, action, and reward, initially null

if TERMINAL?(s) then Q[s, None] < 1’
if s is not null then
mcrement N, |[s, a]
Q[s, al < Qls,a] + a(Ngls, a])(r + v max, Q[s',a'] — QIs,al)
s,a,r s’ argmax,, f(Q[s', a'], Neo|s',a']), r’
return a

Figure 21.8  An exploratory Q-learning agent. It is an active learner that learns the value
(Q(s,a) of each action in each situation. It uses the same exploration function f as the ex-

ploratory ADP agent, but avoids having to learn the transition model because the Q-value of
a state can be related directly to those of its neighbors.



Convergence
Q-Learning converges to an optimal policy, even when acting suboptimally.

e This is called off-policy learning.

e Technical caveats:
o You have to explore enough.
o The learning rate must eventually become small enough.

o .. butit shouldn't decrease too quickly.

Image credits: CS188, UC Berkeley. 44758
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Generalizing across states

e Basic Q-Learning keeps a table for all Q-values
Q(s; a).
e Inrealistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training.

o Too many states to hold the Q-table in memory.

 We want to generalize:

o Learn about some small number of training states from
experience.

o Generalize that experience to new, similar situations.

o Thisis supervised machine learning again!

Image credits: CS188, UC Berkeley.
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Example: Pacman

L]

. s 8 s s s s+ @
L ]
L ]

-
L
L
L
L
L
L
L
®

L]
L3

If we discover by experience that (a) is bad, then in naive Q-Learning, we know
nothing about (b) nor (c)!

Image credits: , UC Berkeley.
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Feature-based representations

Solution: describe a state s using a vector
x = [f1(s), ..., fa(s)] € R? of features.

L]

L]
L]
*
L ]
-
L
L
*
®

« Features are functions f; from states to real
numbers that capture important properties of the
state.

L

e Example features:
o Distance to closest ghost
o Distance to closest dot

o Number of ghosts

o ...

« Can similarly describe a g-state (s, a) with features

fr(s,a).

Image credits: , UC Berkeley.
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Approximate Q-Learning

Using a feature-based representation, the Q-table can now be replaced with a
function approximator, such as a linear model

Q(s,a) — wlfl(saa’) + ’U)2f2(8, a’) Tt wdfd(s7a’)'

Upon the transition (s, r, a, s'), the update becomes
wi ¢ i+ ar + ymax Q< a') — Q(s, a))fi(s, ),

for all wy,.

Image credits: CS188, UC Berkeley. 48/58
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In linear regression, imagine we had only one point x with features | f1,
Then,

t(w) = ; (y - Zwkfk>

k
aa—ui = — (y;wkfk> fr
Wy — Wi + o <y Z’wkfk> I,
k

hence the Q-update

\ .

wy, <+ wg +a | r+ymaxQ(s’,a’) — Q(s,a) | fi(s,a).
a _J/

N~

target y prediction

oy il
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DQN

Similarly, the Q-table can be replaced with a neural network as function
approximator, resulting in the DQN algorithm.

Convolution Convolution Fully connected
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Figure 1| Schematic illustration of the convolutional neural network. The  symbolizes sliding of each filter across input image) and two fully connected
details of the architecture are explained in the Methods. The input to the neural  layers with a single output for each valid action. Each hidden layer is followed
network consists of an 84 X 84 X 4 image produced by the preprocessing by a rectifier nonlinearity (that is, max(0,x)).

map ¢, followed by three convolutional layers (note: snaking blue line

DQN Network Architecture
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(demo)
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Applications
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https://www.youtube.com/watch?v=Tnu4O_xEmVk

@ oo eomiogpgprvigra mmlm

Playing Atari Games (Pinball)

54/58


https://www.youtube.com/watch?v=l5o429V1bbU

»® QT-Opt: Scalable Deep Reinforcement Learning f... © ~
% Later beklj Delen

yal

. ff#d-h

Robotic manipulation
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‘ Champion-level Drone Racing using Deep Reinfo... 0 ~»

Later bekij... Delen

Drone racing
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My mission ¢/

By the end of this course, you will have built autonomous agents that efficiently
make decisions in fully informed, partially observable and adversarial settings.
Your agents will draw inferences in uncertain and unknown environments and
optimize actions for arbitrary reward structures.
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The end.
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