
Introduction to Arti�cial Intelligence
Lecture 9: Reinforcement Learning

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 58

mailto:g.louppe@uliege.be

Reinforcement learning (RL)

Passive RL

Model-based estimation

Model-free estimation

Direct utility estimation

Temporal-difference learning

Active RL
Model-based learning

Q-Learning

Generalizing across states

Today
How to make decisions under uncertainty, while learning about the
environment?

―
Image credits: CS188, UC Berkeley. 2 / 58

https://inst.eecs.berkeley.edu/~cs188/

―
Image credits: CS188, UC Berkeley. 3 / 58

https://inst.eecs.berkeley.edu/~cs188/

MDPs
A short recap.

4 / 58

MDPs
A Markov decision process (MDP) is a tuple such that:

 is a set of states ;

 is a set of actions ;

 is a (stationary) transition model such that denotes the
probability of reaching state if action is done in state ;

 is a reward function that maps immediate (�nite) reward values
obtained in states .

(is the discount factor.)

(S ,A,P ,R)

S s

A a

P P (s ∣s, a)′

s′ a s

R R(s)
s

0 < γ ≤ 1

5 / 58

s′

r = R(s)′ ′

s

s ∼ P (s ∣s, a)′ ′

a

6 / 58

Remarks

Although MDPs generalize to continuous state-action spaces, we assume
in this lecture that both and are discrete and �nite.

The formalism we use to de�ne MDPs is not unique. A quite well-
established and equivalent variant is to de�ne the reward function with
respect to a transition , i.e. . This results in new (but
equivalent) formulations of the algorithms covered in Lecture 8.

S A

(s, a, s)′ R(s, a, s)′

7 / 58

The Bellman equation
The utility of a state is the immediate reward for that state, plus the expected
discounted utility of the next state, assuming that the agent chooses the
optimal action:

V (s) = R(s) + γ P (s ∣s, a)V (s).
a
max

s′

∑ ′ ′

―
Image credits: CS188, UC Berkeley. 8 / 58

https://inst.eecs.berkeley.edu/~cs188/

Value iteration
The value iteration algorithm provides a �xed-point iteration procedure for
computing the state utilities :

Let be the estimated utility value for at the -th iteration step.

The Bellman update consists in updating simultaneously all the estimates
to make them locally consistent with the Bellman equation:

Repeat until convergence.

V (s)

V (s)i s i

V (s) = R(s) + γ P (s ∣s, a)V (s).i+1
a
max

s′

∑ ′
i

′

9 / 58

Policy iteration
The policy iteration algorithm directly computes the policy (instead of state
values). It alternates the following two steps:

Policy evaluation: given , calculate , i.e. the utility of each state if
 is executed:

Policy improvement: calculate a new policy using one-step look-ahead
based on :

πi V = Vi
πi

πi

V (s) = R(s) + γ P (s ∣s, π (s))V (s).i

s′

∑ ′
i i

′

πi+1

Vi

π (s) = arg P (s ∣s, a)V (s).i+1
a
max

s′

∑ ′
i

′

10 / 58

Reinforcement learning

11 / 58

0:00 / 0:40

―
Video credits: Megan Hayes, @YAWScience, 2020. 12 / 58

https://twitter.com/PigMegan
https://twitter.com/YAWScience/status/1304199719036444672

0:00 / 0:27

―
Video credits: Megan Hayes, @YAWScience, 2020. 13 / 58

https://twitter.com/PigMegan
https://twitter.com/YAWScience/status/1304199719036444672

What just happened?

This wasn't planning, it was reinforcement learning!

There was an MDP, but the chicken couldn't solve it with just computation.

The chicken needed to actually act to �gure it out.

Important ideas in reinforcement learning that came up

Exploration: you have to try unknown actions to get information.

Exploitation: eventually, you have to use what you know.

Regret: even if you learn intelligently, you make mistakes.

Sampling: because of chance, you have to try things repeatedly.

Di�cult: learning can be much harder than solving a known MDP.

14 / 58

Reinforcement learning
We still assume a Markov decision process such that:

 is a set of states ;

 is a set of actions ;

 is a (stationary) transition model such that denotes the
probability of reaching state if action is done in state ;

 is a reward function that maps immediate (�nite) reward values
obtained in states .

Our goal is �nd the optimal policy .

(S ,A,P ,R)

S s

A a

P P (s ∣s, a)′

s′ a s

R R(s)
s

π (s)∗

15 / 58

New twist

The transition model and the reward function are unknown.

We do not know which states are good nor what actions do!

We must observe or interact with the environment in order to jointly learn
these dynamics and act upon them.

P (s ∣s, a)′ R(s)

s′

r =′

???

R(s)′

s

s ∼′

???

P (s ∣s, a)′

a

16 / 58

Passive RL

Goal: policy evaluation

The agent's policy is �xed.

Its goal is to learn the utilities .

The learner has no choice about what actions to take. It just executes the
policy and learns from experience.

π

V (s)π

―
Image credits: CS188, UC Berkeley. 17 / 58

https://inst.eecs.berkeley.edu/~cs188/

The agent executes a set of trials (or episodes) in the environment using policy
. Trial trajectories might look like this:

Trial 1:

Trial 2:

Trial 3:

Trial 4:

π (s, r, a, s), (s , r , a , s), ...′ ′ ′ ′ ′′

(B, −1, east,C), (C, −1, east,D), (D, +10, exit, ⊥)

(B, −1, east,C), (C, −1, east,D), (D, +10, exit, ⊥)

(E, −1, north,C), (C, −1, east,D), (D, +10, exit, ⊥)

(E, −1, north,C), (C, −1, east,A), (A, −10, exit, ⊥)

18 / 58

Model-based estimation

A model-based agent estimates approximate transition and reward models
and based on experiences and then evaluates the resulting empirical MDP.

Step 1: Learn an empirical MDP.

Estimate from empirical samples or with supervised learning.

Discover each for each .

Step 2: Evaluate using and , e.g. as

P̂

R̂

(s ∣s, a)P̂ ′ (s, a, s)′

(s)R̂ s

π P̂ R̂

V (s) = (s) + γ (s ∣s, π(s))V (s).R̂
s′

∑ P̂ ′ ′

―
Image credits: CS188, UC Berkeley. 19 / 58

https://inst.eecs.berkeley.edu/~cs188/

Policy : Trajectories:

Learned transition model : Learned reward :

Example

π

(B, −1, east,C), (C, −1, east,D), (D, +10, exit, ⊥)
(B, −1, east,C), (C, −1, east,D), (D, +10, exit, ⊥)
(E, −1, north,C), (C, −1, east,D), (D, +10, exit, ⊥)
(E, −1, north,C), (C, −1, east,A), (A, −10, exit, ⊥)

P̂

(C∣B, east) = 1P̂

(D∣C, east) = 0.75P̂

(A∣C, east) = 0.25P̂

(...)

R̂

(B) = −1R̂

(C) = −1R̂

(D) = +10R̂

(...)

20 / 58

Model-free estimation
Can we learn in a model-free fashion, without explicitly modeling the
environment, i.e. without learning and ?

V π

P̂ R̂

21 / 58

Direct utility estimation
(a.k.a. Monte Carlo evaluation)

The utility of state is the expected total reward from the state
onward (called the expected reward-to-go)

Each trial provides a sample of this quantity for each state visited.

Therefore, at the end of each sequence, one can update a sample average
 by:

computing the observed reward-to-go for each state;

updating the estimated utility for that state, by keeping a running average.

In the limit of in�nitely many trials, the sample average will converge to the
true expectation.

V (s)π s

V (s) = E γ R(s)π [
t=0

∑
∞

t
t]

∣
∣
∣
∣
∣

s =s0

(s)V̂ π

22 / 58

Policy : Trajectories:

Output values

:

If both and go to under ,
how can their values be different?

Example ()γ = 1

π

(B, −1, east,C), (C, −1, east,D), (D, +10, exit, ⊥)
(B, −1, east,C), (C, −1, east,D), (D, +10, exit, ⊥)
(E, −1, north,C), (C, −1, east,D), (D, +10, exit, ⊥)
(E, −1, north,C), (C, −1, east,A), (A, −10, exit, ⊥)

(s)V̂ π

B E C π

23 / 58

Unfortunately, direct utility estimation misses the fact that the state values
 are not independent, since they obey the Bellman equations for a �xed

policy:

Therefore, direct utility estimation misses opportunities for learning and takes a
long time to learn.

V (s)π

V (s) = R(s) + γ P (s ∣s, π(s))V (s).π

s′

∑ ′ π ′

24 / 58

Temporal-difference learning
Temporal-difference (TD) learning consists in updating each time the
agent experiences a transition .

When a transition from to occurs, the temporal-difference update steers
 to better agree with the Bellman equations for a �xed policy, i.e.

where is the learning rate parameter.

V (s)π

(s, r = R(s), a = π(s), s)′

s s′

V (s)π

V (s) ← V (s) + απ π

temporal difference error

(r + γV (s) − V (s))π ′ π

α

25 / 58

Alternatively, the TD-update can be viewed as a single gradient descent step on
the squared error between the target and the prediction .
(More later.)

r + γV (s)π ′ V (s)π

26 / 58

Exponential moving average

The TD-update can equivalently be expressed as the exponential moving
average

Intuitively,

this makes recent samples more important;

this forgets about the past (distant past values were wrong anyway).

V (s) ← (1 − α)V (s) + α(r + γV (s)).π π π ′

27 / 58

Transition:

Example (,)

TD-update:

γ = 1 α = 0.5

(B, −1, east,C)

V (B)π ← V (B) + α(R(B) + γV (C) − V (B))π π π

← 0+ 0.5(−1 + 0 − 0)

← −0.5

28 / 58

Transition:

TD-update:

(C, −1, east,D)

V (C)π ← V (C) + α(R(C) + γV (D) − V (C))π π π

← 0+ 0.5(−1 + 8 − 0)

← 3.5

29 / 58

Convergence

Notice that the TD-update involves only the observed successor ,
whereas the actual Bellman equations for a �xed policy involves all possible
next states. Nevertheless, the average value of will converge to the
correct value.

If we change from a �xed parameter to a function that decreases as the
number of times a state has been visited increases, then will itself
converge to the correct value.

s′

V (s)π

α

V (s)π

30 / 58

Active RL

Goal: learn an optimal policy

The agent's policy is not �xed anymore.

Its goal is to learn the optimal policy or the state values .

The learner makes choices!

Fundamental trade-off: exploration vs. exploitation.

π∗ V (s)

―
Image credits: CS188, UC Berkeley. 31 / 58

https://inst.eecs.berkeley.edu/~cs188/

Model-based learning
The passive model-based agent can be made active by instead �nding the
optimal policy for the empirical MDP.

For example, having obtained a utility function that is optimal for the learned
model (e.g., with Value Iteration), the optimal action by one-step look-ahead to
maximize the expected utility is

π∗

V

π (s) = arg (s ∣s, a)V (s).∗
a
max

s′

∑ P̂ ′ ′

32 / 58

The agent does not learn the true utilities or the true optimal policy!

33 / 58

The resulting policy is greedy and suboptimal:

The learned transition and reward models and are not the same as the
true environment since they are based on the samples obtained by the
agent's policy, which biases the learning.

Therefore, what is optimal in the learned model can be suboptimal in the
true environment.

P̂ R̂

34 / 58

Exploration
Actions do more than provide rewards according to the current learned model.
They also contribute to learning the true environment.

This is the exploitation-exploration trade-off:

Exploitation: follow actions that maximize the rewards, under the current
learned model;

Exploration: follow actions to explore and learn about the true environment.

―
Image credits: CS188, UC Berkeley. 35 / 58

https://inst.eecs.berkeley.edu/~cs188/

How to explore?

Simplest approach for forcing exploration: random actions (-greedy).

With a (small) probability , act randomly.

With a (large) probability , follow the current policy.

-greedy does eventually explore the space, but keeps trashing around once
learning is done.

ϵ

ϵ

(1 − ϵ)

ϵ

36 / 58

When to explore?

Better idea: explore areas whose badness is not (yet) established, then stop
exploring.

Formally, let denote an optimistic estimate of the utility of state and let
 be the number of times actions has been tried in .

For Value Iteration, the update equation becomes

where is called the exploration function.

The function should be increasing in and decreasing in . A simple
choice is .

V (s)+ s

N(s, a) a s

V (s) = R(s) + γ f (P (s ∣s, a)V (s),N(s, a)),i+1
+

a
max

s′

∑ ′
i
+ ′

f (v, n)

f (v, n) v n

f (v, n) = v +K/n

37 / 58

Model-free learning
Although temporal difference learning provides a way to estimate in a
model-free fashion, we would still have to learn a model to choose an
action based on a one-step look-ahead.

V π

P (s ∣s, a)′

―
Image credits: CS188, UC Berkeley. 38 / 58

https://inst.eecs.berkeley.edu/~cs188/

The state-value of the state
 is the expected utility starting

in and acting optimally.

The state-action-value of
the q-state is the expected
utility starting out having taken
action from and thereafter
acting optimally.

Détour: Q-values

V (s)
s

s

Q(s, a)
(s, a)

a s

39 / 58

Optimal policy

The optimal policy can be de�ned in terms of either or :π (s)∗ V (s) Q(s, a)

π (s)∗ = arg P (s ∣s, a)V (s)
a
max

s′

∑ ′ ′

= arg Q(s, a)
a
max

―
Image credits: CS188, UC Berkeley. 40 / 58

https://inst.eecs.berkeley.edu/~cs188/

Bellman equations for

Since , the Q-values are recursively de�ned as

As for value iteration, the last equation can be used as an update equation for a
�xed-point iteration procedure that calculates the Q-values . However, it
still requires knowing !

Q

V (s) = max Q(s, a)a Q(s, a)

Q(s, a) = R(s) + γ P (s ∣s, a)V (s)
s′

∑ ′ ′

= R(s) + γ P (s ∣s, a) Q(s , a).
s′

∑ ′

a′
max ′ ′

Q(s, a)
P (s ∣s, a)′

41 / 58

Q-Learning
The state-action-values can be learned in a model-free fashion using a
temporal-difference method known as Q-Learning.

Q-Learning consists in updating each time the agent experiences a
transition .

The update equation for TD Q-Learning is

Since , a TD agent that learns Q-values does not
need a model of the form , neither for learning nor for action
selection!

Q(s, a)

Q(s, a)
(s, r = R(s), a, s)′

Q(s, a) ← Q(s, a) + α(r + γ Q(s , a) −Q(s, a)).
a′
max ′ ′

π (s) = argmax Q(s, a)∗
a

P (s ∣s, a)′

42 / 58

43 / 58

Convergence

Q-Learning converges to an optimal policy, even when acting suboptimally.

This is called off-policy learning.

Technical caveats:

You have to explore enough.

The learning rate must eventually become small enough.

... but it shouldn't decrease too quickly.

―
Image credits: CS188, UC Berkeley. 44 / 58

https://inst.eecs.berkeley.edu/~cs188/

Basic Q-Learning keeps a table for all Q-values
.

In realistic situations, we cannot possibly learn
about every single state!

Too many states to visit them all in training.

Too many states to hold the Q-table in memory.

We want to generalize:

Learn about some small number of training states from
experience.

Generalize that experience to new, similar situations.

This is supervised machine learning again!

Generalizing across states

Q(s, a)

―
Image credits: CS188, UC Berkeley. 45 / 58

https://inst.eecs.berkeley.edu/~cs188/

(a) (b) (c)

Example: Pacman

If we discover by experience that (a) is bad, then in naive Q-Learning, we know
nothing about (b) nor (c)!

―
Image credits: CS188, UC Berkeley. 46 / 58

https://inst.eecs.berkeley.edu/~cs188/

Feature-based representations

Solution: describe a state using a vector
 of features.

Features are functions from states to real
numbers that capture important properties of the
state.

Example features:

Distance to closest ghost

Distance to closest dot

Number of ghosts

...

Can similarly describe a q-state with features
.

s

x = [f (s), ..., f (s)] ∈ R1 d
d

fk

(s, a)
f (s, a)k

―
Image credits: CS188, UC Berkeley. 47 / 58

https://inst.eecs.berkeley.edu/~cs188/

Approximate Q-Learning

Using a feature-based representation, the Q-table can now be replaced with a
function approximator, such as a linear model

Upon the transition , the update becomes

for all .

Q(s, a) = w f (s, a) + w f (s, a) + ... + w f (s, a).1 1 2 2 d d

(s, r, a, s)′

w ← w + α(r + γ Q(s , a) −Q(s, a))f (s, a),k k
a′
max ′ ′

k

wk

―
Image credits: CS188, UC Berkeley. 48 / 58

https://inst.eecs.berkeley.edu/~cs188/

In linear regression, imagine we had only one point with features .
Then,

hence the Q-update

x [f , ..., f]1 d

ℓ(w)

∂wk

∂ℓ

wk

= y − w f
2
1

(
k

∑ k k)

2

= − y − w f f(
k

∑ k k) k

← w + α y − w f f ,k (
k

∑ k k) k

w ← w + α − f (s, a).k k

⎝
⎜
⎛

target y

r + γ Q(s , a)
a′
max ′ ′

prediction

Q(s, a)
⎠
⎟
⎞

k

49 / 58

DQN

Similarly, the Q-table can be replaced with a neural network as function
approximator, resulting in the DQN algorithm.

50 / 58

(demo)

51 / 58

Applications

52 / 58

MarIQ -- Q-Learning Neural Network for Mario KaMarIQ -- Q-Learning Neural Network for Mario Ka……
Later bekijLater bekij…… DelenDelen

MarIQ

53 / 58

https://www.youtube.com/watch?v=Tnu4O_xEmVk

Deep Q Network learning to play Video PinballDeep Q Network learning to play Video Pinball
Later bekijLater bekij…… DelenDelen

Playing Atari Games (Pinball)

54 / 58

https://www.youtube.com/watch?v=l5o429V1bbU

QT-Opt: Scalable Deep Reinforcement Learning fQT-Opt: Scalable Deep Reinforcement Learning f……
Later bekijLater bekij…… DelenDelen

Robotic manipulation

55 / 58

https://www.youtube.com/watch?v=W4joe3zzglU

Champion-level Drone Racing using Deep ReinfoChampion-level Drone Racing using Deep Reinfo……
Later bekijLater bekij…… DelenDelen

Drone racing

56 / 58

https://www.youtube.com/watch?v=fBiataDpGIo

Summary

―
Image credits: CS188, UC Berkeley. 57 / 58

https://inst.eecs.berkeley.edu/~cs188/

My mission ✔

By the end of this course, you will have built autonomous agents that e�ciently
make decisions in fully informed, partially observable and adversarial settings.
Your agents will draw inferences in uncertain and unknown environments and
optimize actions for arbitrary reward structures.

58 / 58

The end.

58 / 58

