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Today

Reasoning under uncertainty and taking decisions:

Markov decision processes
MDPs

Bellman equation

Value iteration

Policy iteration

Partially observable Markov decision processes

―
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Assume our agent lives in a  grid
environment.

Noisy movements: actions do not always go
as planned.

Each action achieves the intended effect with

probability .

The rest of the time, with probability , the action
moves the agent at right angles to the intented
direction.

If there is a wall in the direction the agent would have
been taken, the agent stays put.

The agent receives rewards at each time step.

Small 'living' reward each step (can be negative).

Big rewards come at the end (good or bad).

Goal: maximize sum of rewards.

Grid world

3 × 4

0.8

0.2
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Deterministic
actions

Stochastic actions
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Markov decision processes
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Markov decision processes
A Markov decision process (MDP) is a tuple  such that:

 is a set of states ;

 is a set of actions ;

 is a (stationary) transition model such that  denotes the
probability of reaching state  if action  is done in state ;

 is a reward function that maps immediate (�nite) reward values 
obtained in states .

(S ,A,P ,R)

S s

A a

P P (s ∣s, a)′

s′ a s

R R(s)
s
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s′

r = R(s )′ ′

s

s ∼ P (s ∣s, a)′ ′

a
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Example

: locations  on the grid.

: .

Transition model: 

Reward:

S (i, j)

A [Up, Down, Right, Left]

P (s ∣s, a)′

R(s) = {
−0.3
±1

for non-terminal states
for terminal states

―
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What is Markovian about MDPs?

Given the present state, the future and the past are
independent:

This is similar to search problems, where the successor
function could only depend on the current state. Andrey Markov

P (s ∣s , a , s , a , ..., s ) = P (s ∣s , a )t+1 t t t−1 t−1 0 t+1 t t
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In deterministic single-agent search problems,
our goal was to �nd an optimal plan, or
sequence of actions, from start to goal.

For MDPs, we want to �nd an optimal policy 
.

A policy  maps states to actions.

An optimal policy is one that maximizes the expected
utility, e.g. the expected sum of rewards.

An explicit policy de�nes a re�ex agent.

Expectiminimax did not compute entire
policies, but only some action for a single
state.

Optimal policy when 
 for all non-

terminal states .

Policies

π : S → A∗

π

R(s) = −0.3
s

―
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(a) Optimal policy when  for all non-terminal states . (b) Optimal
policies for four different ranges of .

Depending on , the balance between risk and reward changes from risk-
taking to very conservative.

R(s) = −0.04 s

R(s)

R(s)
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Utilities over time

What preferences should an agent have over state or reward sequences?

More or less?  or ?

Now or later?  or ?

[2, 3, 4] [1, 2, 2]

[1, 0, 0] [0, 0, 1]

―
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Additive utility:

Discounted utility:
( )

Theorem

If we assume stationary preferences over reward sequences, i.e. such that

then there are only two coherent ways to assign utilities to sequences:

[r , r , r , ...] ≻ [r , r , r , ...] ⇒ [r , r , ...] ≻ [r , r , ...],0 1 2 0 1
′

2
′

1 2 1
′

2
′

0 < γ < 1

V ([r , r , r , ...]) = r + r + r + ...0 1 2 0 1 2

V ([r , r , r , ...]) = r + γr + γ r + ...0 1 2 0 1
2
2
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Discounting

Each time we transition to the
next state, we multiply in the
discount once.

Why discount?

Sooner rewards probably do have
higher utility than later rewards.

Will help our algorithms converge.

Example: discount γ = 0.5

V ([1, 2, 3]) = 1 + 0.5 × 2 + 0.25 × 3

V ([1, 2, 3]) < V ([3, 2, 1])

―
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In�nite sequences

What if the agent lives forever? Do we get in�nite rewards? Comparing reward
sequences with  utility is problematic.

Solutions:

Finite horizon: (similar to depth-limited search)

Terminate episodes after a �xed number of steps .

Results in non-stationary policies (  depends on time left).

Discounting (with  and rewards bounded by ):

Smaller  results in a shorter horizon.

Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached.

+∞

T

π

0 < γ < 1 ±Rmax

V ([r , r , ..., r ]) = γ r ≤0 1 ∞
t=0

∑
∞

t
t 1 − γ

Rmax

γ
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Policy evaluation

The expected utility obtained by executing  starting in  is given by

where the expectation is with respect to the probability distribution over state
sequences determined by  and .

π s

V (s) = E γ R(s )π [
t=0

∑
∞

t
t ]

∣
∣
∣
∣
∣

s =s0

s π

―
Image credits: CS188, UC Berkeley. 17 / 51

https://inst.eecs.berkeley.edu/~cs188/


Optimal policies

Among all policies the agent could execute, the optimal policy is the policy 
that maximizes the expected utility:

Because of discounted utilities, the optimal policy is independent of the starting
state  (see later). Therefore we simply write .

πs
∗

π = arg V (s)s
∗

π
max π

s π∗
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Values of states
The utility, or value,  of a state is now simply de�ned as .

That is, the expected (discounted) reward if the agent executes an optimal
policy starting from .

Notice that  and  are quite different quantities:

 is the short term reward for having reached .

 is the long term total reward from  onward.

V (s) V (s)π∗

s

R(s) V (s)

R(s) s

V (s) s

19 / 51



Utilities of the states in Grid World, calculated with  and 
for non-terminal states.

γ = 1 R(s) = −0.04
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Policy extraction

Using the principle of maximum expected utility, the optimal action maximizes
the expected utility of the subsequent state. That is,

Therefore, we can extract the optimal policy provided we can estimate the
utilities of states.

π (s) = arg P (s ∣s, a)V (s ).∗
a
max

s′

∑ ′ ′

―
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π (s) = arg P (s ∣s, a)V (s )∗
a
max

s′

∑ ′ ′

―
Image credits: CS188, UC Berkeley. 22 / 51

https://inst.eecs.berkeley.edu/~cs188/


The Bellman equation
The utility of a state is the immediate reward for that state, plus the expected
discounted utility of the next state, assuming that the agent chooses the
optimal action:

These equations are called the Bellman equations. They form a system of 
 non-linear equations with as many unknowns.

The utilities of states, de�ned as the expected utility of subsequent state
sequences, are solutions of the set of Bellman equations.

V (s) = R(s) + γ P (s ∣s, a)V (s ).
a
max

s′

∑ ′ ′

n = ∣S ∣
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Example

V (1, 1) = −0.04 + γmax[0.8V (1, 2) + 0.1V (2, 1) + 0.1V (1, 1),

0.9V (1, 1) + 0.1V (1, 2),

0.9V (1, 1) + 0.1V (2, 1),

0.8V (2, 1) + 0.1V (1, 2) + 0.1V (1, 1)]
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Value iteration
Because of the  operator, the Bellman equations are non-linear and solving
the system is problematic.

The value iteration algorithm provides a �xed-point iteration procedure for
computing the state utilities :

Let  be the estimated utility value for  at the -th iteration step.

The Bellman update consists in updating simultaneously all the estimates
to make them locally consistent with the Bellman equation:

Repeat until convergence.

max

V (s)

V (s)i s i

V (s) := R(s) + γ P (s ∣s, a)V (s )i+1
a
max

s′

∑ ′
i

′
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(Step-by-step code example)

27 / 51



Convergence

Let  and  be successive approximations to the true utility .

Theorem. For any two approximations  and ,

That is, the Bellman update is a contraction by a factor  on the space of
utility vector.

Therefore, any two approximations must get closer to each other, and in
particular any approximation must get closer to the true .

 Value iteration always converges to a unique solution of the Bellman
equations whenever .

Vi Vi+1 V

Vi Vi
′

∣∣V − V ∣∣ ≤ γ∣∣V − V ∣∣ .i+1 i+1
′

∞ i i
′
∞

γ

V

⇒
γ < 1
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Performance

Since , the error is reduced by a factor of at
least  at each iteration.

Therefore, value iteration converges exponentially fast:

The maximum initial error is .

To reach an error of at most  after  iterations, we require 
.

∣∣V − V ∣∣ ≤ γ∣∣V − V ∣∣i+1 ∞ i ∞

γ

∣∣V − V ∣∣ ≤ 2R /(1 − γ)0 ∞ max

ϵ N

γ 2R /(1 − γ) ≤ ϵN
max
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Problems with value iteration

Value iteration repeats the Bellman updates:

Problem 1: it is slow –  per iteration.

Problem 2: the  at each state rarely changes.

Problem 3: the policy  extracted from the estimate  might be optimal
even if  is inaccurate!

V (s) = R(s) + γ P (s ∣s, a)V (s )i+1
a
max

s′

∑ ′
i

′

O(∣S ∣ ∣A∣)2

max

πi Vi

Vi
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Policy iteration
The policy iteration algorithm instead directly computes the policy (instead of
state values). It alternates the following two steps:

Policy evaluation: given , calculate , i.e. the utility of each state if
 is executed.

Policy improvement: calculate a new policy  using one-step look-ahead
based on :

This algorithm is still optimal, and might converge (much) faster under some
conditions.

πi V = Vi
πi

πi

πi+1

Vi

π (s) = arg P (s ∣s, a)V (s )i+1
a
max

s′

∑ ′
i

′
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Policy evaluation

At the -th iteration we have a simpli�ed version of the Bellman equations that
relate the utility of  to the utilities of its neighbors:

These equations are now linear because the  operator has been removed.

for  states, we have  equations with  unknowns;

this can be solved exactly in  by standard linear algebra methods.

i

s

V (s) = R(s) + γ P (s ∣s, π (s))V (s )i

s′

∑ ′
i i

′

max

n n n

O(n )3
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In some cases  is too prohibitive. Fortunately, it is not necessary to
perform exact policy evaluation. An approximate solution is su�cient.

One way is to run  iterations of simpli�ed Bellman updates:

This hybrid algorithm is called modi�ed policy iteration.

O(n )3

k

V (s) = R(s) + γ P (s ∣s, π (s))V (s )i+1

s′

∑ ′
i i

′
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(Step-by-step code example)
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The game 2048 is a Markov decision process!

: all possible con�gurations of the board
(huge!)

: swiping left, right, up or down.

: encodes the game's dynamic

collapse matching tiles

place a random tile on the board

 if  is a winning state, and 
otherwise.

Recap example: 2048

S

A

P (s ∣s, a)′

R(s) = 1 s 0
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sum 10
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The transition model for a  board and a winning state at .2 × 2 8
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Optimal play for a  grid and a winning state at .

See jdlm.info: The Mathematics of 2048.

3 × 3 1024
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Partially observable Markov decision

processes
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POMDPs
What if the environment is only partially observable?

The agent does not know in which state  it is in.

Therefore, it cannot evaluate the reward  associated to the unknown state.

Also, it makes no sense to talk about a policy .

Instead, the agent collects percepts  through a sensor model , from
which it can reason about the unknown state .

s

R(s)

π(s)

e P (e∣s)
s

―
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We will assume that the agent maintains a belief state .

 represents a probability distribution  of the current agent's beliefs
over its state;

 denotes the probability  under the current belief state;

the belief state  is updated as evidence  are collected.

This is �ltering!

b

b P(S)

b(s) P (S = s)

b e
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e′

b

s ∼ P (s ∣s, a)′ ′

e ∼ P (e ∣s )′ ′ ′

a
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Belief MDP
Theorem (Astrom, 1965). The optimal action depends only on the agent's
current belief state.

The optimal policy can be described by a mapping  from beliefs to
actions.

It does not depend on the actual state the agent is in.

In other words, POMDPs can be reduced to an MDP in belief-state space,
provided we can de�ne a transition model  and a reward function 
over belief states.

π (b)∗

P (b ∣b, a)′ ρ
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If  was the previous belief state and the agent does action  and perceives ,
then the new belief state over  is given by

Therefore,

where  if  and  otherwise.

b a e

S ′

b = αP(e∣S ) P(S ∣s, a)b(s) = α forward(b, a, e).′ ′

s

∑ ′

P (b ∣b, a)′ = P (b , e∣b, a)
e

∑ ′

= P (b ∣b, a, e)P (e∣b, a)
e

∑ ′

= P (b ∣b, a, e) P (e∣b, a, s )P (s ∣b, a)
e

∑ ′

s′

∑ ′ ′

= P (b ∣b, a, e) P (e∣s ) P (s ∣s, a)b(s)
e

∑ ′

s′

∑ ′

s

∑ ′

P (b ∣b, a, e) = 1′ b = forward(b, a, e)′ 0
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We can also de�ne a reward function for belief states as the expected reward
for the actual state the agent might be in:

ρ(b) = b(s)R(s)
s

∑

45 / 51



b′

ρ(b )′

b

b ∼ P (b ∣b, a)′ ′

a
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Although we have reduced POMDPs to MDPs, the Belief MDP we obtain has a
continuous (and usually high-dimensional) state space.

None of the algorithms described earlier directly apply.

In fact, solving POMDPs remains a di�cult problem for which there is no
known e�cient exact algorithm.

Yet, Nature is a POMDP.
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Online agents
While it is di�cult to directly derive , a decision-theoretic agent can be
constructed for POMDPs:

The transition and sensor models are represented by a dynamic Bayesian
network;

The dynamic Bayesian network is extended with decision ( ) and utility (
and ) nodes to form a dynamic decision network;

A �ltering algorithm is used to incorporate each new percept and action
and to update the belief state representation;

Decisions are made by projecting forward possible action sequences and
choosing (approximately) the best one, in a manner similar to a truncated
Expectiminimax.

π∗

A R

U
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At time , the agent must decide what to do.

Shaded nodes represent variables with known values.

The network is unrolled for a �nite horizon.

It includes nodes for the reward of  and , but the (estimated)
utility of .

t

Xt+1 Xt+2

Xt+3
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Part of the look-ahead solution of the previous decision network:

Each triangular node is a belief state in which the agent makes a decision.

The belief state at each node can be computed by applying a �ltering algorithm to the
sequence of percepts and actions leading to it.

The round nodes correspond to choices by the environment.

A decision can be extracted from the search tree by backing up the (estimated)
utility values from the leaves, taking the average at the chance nodes and taking
the maximum at the decision nodes.
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Summary
Sequential decision problems in uncertain environments, called MDPs, are
de�ned by transition model and a reward function.

The utility of a state sequence is the sum of all the rewards over the
sequence, possibly discounted over time.

The solution of an MDP is a policy that associates a decision with every state that the agent
might reach.

An optimal policy maximizes the utility of the state sequence encountered when it is executed.

Value iteration and policy iteration can both be used for solving MDPs.

POMDPs are much more di�cult than MDPs. However, a decision-theoretic
agent can be constructed for those environments.
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The end.
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