
Introduction to Arti�cial Intelligence
Lecture 8: Making decisions

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 51

mailto:g.louppe@uliege.be

2 / 51

Today

Reasoning under uncertainty and taking decisions:

Markov decision processes
MDPs

Bellman equation

Value iteration

Policy iteration

Partially observable Markov decision processes

―
Image credits: CS188, UC Berkeley. 3 / 51

https://inst.eecs.berkeley.edu/~cs188/

Assume our agent lives in a grid
environment.

Noisy movements: actions do not always go
as planned.

Each action achieves the intended effect with

probability .

The rest of the time, with probability , the action
moves the agent at right angles to the intented
direction.

If there is a wall in the direction the agent would have
been taken, the agent stays put.

The agent receives rewards at each time step.

Small 'living' reward each step (can be negative).

Big rewards come at the end (good or bad).

Goal: maximize sum of rewards.

Grid world

3 × 4

0.8

0.2

―
Image credits: CS188, UC Berkeley. 4 / 51

https://inst.eecs.berkeley.edu/~cs188/

Deterministic
actions

Stochastic actions

―
Image credits: CS188, UC Berkeley. 5 / 51

https://inst.eecs.berkeley.edu/~cs188/

Markov decision processes

6 / 51

Markov decision processes
A Markov decision process (MDP) is a tuple such that:

 is a set of states ;

 is a set of actions ;

 is a (stationary) transition model such that denotes the
probability of reaching state if action is done in state ;

 is a reward function that maps immediate (�nite) reward values
obtained in states .

(S ,A,P ,R)

S s

A a

P P (s ∣s, a)′

s′ a s

R R(s)
s

7 / 51

s′

r = R(s)′ ′

s

s ∼ P (s ∣s, a)′ ′

a

8 / 51

Example

: locations on the grid.

: .

Transition model:

Reward:

S (i, j)

A [Up, Down, Right, Left]

P (s ∣s, a)′

R(s) = {
−0.3
±1

for non-terminal states
for terminal states

―
Image credits: CS188, UC Berkeley. 9 / 51

https://inst.eecs.berkeley.edu/~cs188/

What is Markovian about MDPs?

Given the present state, the future and the past are
independent:

This is similar to search problems, where the successor
function could only depend on the current state. Andrey Markov

P (s ∣s , a , s , a , ..., s) = P (s ∣s , a)t+1 t t t−1 t−1 0 t+1 t t

10 / 51

In deterministic single-agent search problems,
our goal was to �nd an optimal plan, or
sequence of actions, from start to goal.

For MDPs, we want to �nd an optimal policy
.

A policy maps states to actions.

An optimal policy is one that maximizes the expected
utility, e.g. the expected sum of rewards.

An explicit policy de�nes a re�ex agent.

Expectiminimax did not compute entire
policies, but only some action for a single
state.

Optimal policy when
 for all non-

terminal states .

Policies

π : S → A∗

π

R(s) = −0.3
s

―
Image credits: CS188, UC Berkeley. 11 / 51

https://inst.eecs.berkeley.edu/~cs188/

(a) Optimal policy when for all non-terminal states . (b) Optimal
policies for four different ranges of .

Depending on , the balance between risk and reward changes from risk-
taking to very conservative.

R(s) = −0.04 s

R(s)

R(s)

12 / 51

Utilities over time

What preferences should an agent have over state or reward sequences?

More or less? or ?

Now or later? or ?

[2, 3, 4] [1, 2, 2]

[1, 0, 0] [0, 0, 1]

―
Image credits: CS188, UC Berkeley. 13 / 51

https://inst.eecs.berkeley.edu/~cs188/

Additive utility:

Discounted utility:
()

Theorem

If we assume stationary preferences over reward sequences, i.e. such that

then there are only two coherent ways to assign utilities to sequences:

[r , r , r , ...] ≻ [r , r , r , ...] ⇒ [r , r , ...] ≻ [r , r , ...],0 1 2 0 1
′

2
′

1 2 1
′

2
′

0 < γ < 1

V ([r , r , r , ...]) = r + r + r + ...0 1 2 0 1 2

V ([r , r , r , ...]) = r + γr + γ r + ...0 1 2 0 1
2
2

14 / 51

Discounting

Each time we transition to the
next state, we multiply in the
discount once.

Why discount?

Sooner rewards probably do have
higher utility than later rewards.

Will help our algorithms converge.

Example: discount γ = 0.5

V ([1, 2, 3]) = 1 + 0.5 × 2 + 0.25 × 3

V ([1, 2, 3]) < V ([3, 2, 1])

―
Image credits: CS188, UC Berkeley. 15 / 51

https://inst.eecs.berkeley.edu/~cs188/

In�nite sequences

What if the agent lives forever? Do we get in�nite rewards? Comparing reward
sequences with utility is problematic.

Solutions:

Finite horizon: (similar to depth-limited search)

Terminate episodes after a �xed number of steps .

Results in non-stationary policies (depends on time left).

Discounting (with and rewards bounded by):

Smaller results in a shorter horizon.

Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached.

+∞

T

π

0 < γ < 1 ±Rmax

V ([r , r , ..., r]) = γ r ≤0 1 ∞
t=0

∑
∞

t
t 1 − γ

Rmax

γ

16 / 51

Policy evaluation

The expected utility obtained by executing starting in is given by

where the expectation is with respect to the probability distribution over state
sequences determined by and .

π s

V (s) = E γ R(s)π [
t=0

∑
∞

t
t]

∣
∣
∣
∣
∣

s =s0

s π

―
Image credits: CS188, UC Berkeley. 17 / 51

https://inst.eecs.berkeley.edu/~cs188/

Optimal policies

Among all policies the agent could execute, the optimal policy is the policy
that maximizes the expected utility:

Because of discounted utilities, the optimal policy is independent of the starting
state (see later). Therefore we simply write .

πs
∗

π = arg V (s)s
∗

π
max π

s π∗

18 / 51

Values of states
The utility, or value, of a state is now simply de�ned as .

That is, the expected (discounted) reward if the agent executes an optimal
policy starting from .

Notice that and are quite different quantities:

 is the short term reward for having reached .

 is the long term total reward from onward.

V (s) V (s)π∗

s

R(s) V (s)

R(s) s

V (s) s

19 / 51

Utilities of the states in Grid World, calculated with and
for non-terminal states.

γ = 1 R(s) = −0.04

20 / 51

Policy extraction

Using the principle of maximum expected utility, the optimal action maximizes
the expected utility of the subsequent state. That is,

Therefore, we can extract the optimal policy provided we can estimate the
utilities of states.

π (s) = arg P (s ∣s, a)V (s).∗
a
max

s′

∑ ′ ′

―
Image credits: CS188, UC Berkeley. 21 / 51

https://inst.eecs.berkeley.edu/~cs188/

π (s) = arg P (s ∣s, a)V (s)∗
a
max

s′

∑ ′ ′

―
Image credits: CS188, UC Berkeley. 22 / 51

https://inst.eecs.berkeley.edu/~cs188/

The Bellman equation
The utility of a state is the immediate reward for that state, plus the expected
discounted utility of the next state, assuming that the agent chooses the
optimal action:

These equations are called the Bellman equations. They form a system of
 non-linear equations with as many unknowns.

The utilities of states, de�ned as the expected utility of subsequent state
sequences, are solutions of the set of Bellman equations.

V (s) = R(s) + γ P (s ∣s, a)V (s).
a
max

s′

∑ ′ ′

n = ∣S ∣

23 / 51

Example

V (1, 1) = −0.04 + γmax[0.8V (1, 2) + 0.1V (2, 1) + 0.1V (1, 1),

0.9V (1, 1) + 0.1V (1, 2),

0.9V (1, 1) + 0.1V (2, 1),

0.8V (2, 1) + 0.1V (1, 2) + 0.1V (1, 1)]

24 / 51

Value iteration
Because of the operator, the Bellman equations are non-linear and solving
the system is problematic.

The value iteration algorithm provides a �xed-point iteration procedure for
computing the state utilities :

Let be the estimated utility value for at the -th iteration step.

The Bellman update consists in updating simultaneously all the estimates
to make them locally consistent with the Bellman equation:

Repeat until convergence.

max

V (s)

V (s)i s i

V (s) := R(s) + γ P (s ∣s, a)V (s)i+1
a
max

s′

∑ ′
i

′

25 / 51

26 / 51

(Step-by-step code example)

27 / 51

Convergence

Let and be successive approximations to the true utility .

Theorem. For any two approximations and ,

That is, the Bellman update is a contraction by a factor on the space of
utility vector.

Therefore, any two approximations must get closer to each other, and in
particular any approximation must get closer to the true .

 Value iteration always converges to a unique solution of the Bellman
equations whenever .

Vi Vi+1 V

Vi Vi
′

∣∣V − V ∣∣ ≤ γ∣∣V − V ∣∣ .i+1 i+1
′

∞ i i
′
∞

γ

V

⇒
γ < 1

28 / 51

Performance

Since , the error is reduced by a factor of at
least at each iteration.

Therefore, value iteration converges exponentially fast:

The maximum initial error is .

To reach an error of at most after iterations, we require
.

∣∣V − V ∣∣ ≤ γ∣∣V − V ∣∣i+1 ∞ i ∞

γ

∣∣V − V ∣∣ ≤ 2R /(1 − γ)0 ∞ max

ϵ N

γ 2R /(1 − γ) ≤ ϵN
max

29 / 51

Problems with value iteration

Value iteration repeats the Bellman updates:

Problem 1: it is slow – per iteration.

Problem 2: the at each state rarely changes.

Problem 3: the policy extracted from the estimate might be optimal
even if is inaccurate!

V (s) = R(s) + γ P (s ∣s, a)V (s)i+1
a
max

s′

∑ ′
i

′

O(∣S ∣ ∣A∣)2

max

πi Vi

Vi

30 / 51

Policy iteration
The policy iteration algorithm instead directly computes the policy (instead of
state values). It alternates the following two steps:

Policy evaluation: given , calculate , i.e. the utility of each state if
 is executed.

Policy improvement: calculate a new policy using one-step look-ahead
based on :

This algorithm is still optimal, and might converge (much) faster under some
conditions.

πi V = Vi
πi

πi

πi+1

Vi

π (s) = arg P (s ∣s, a)V (s)i+1
a
max

s′

∑ ′
i

′

31 / 51

Policy evaluation

At the -th iteration we have a simpli�ed version of the Bellman equations that
relate the utility of to the utilities of its neighbors:

These equations are now linear because the operator has been removed.

for states, we have equations with unknowns;

this can be solved exactly in by standard linear algebra methods.

i

s

V (s) = R(s) + γ P (s ∣s, π (s))V (s)i

s′

∑ ′
i i

′

max

n n n

O(n)3

32 / 51

In some cases is too prohibitive. Fortunately, it is not necessary to
perform exact policy evaluation. An approximate solution is su�cient.

One way is to run iterations of simpli�ed Bellman updates:

This hybrid algorithm is called modi�ed policy iteration.

O(n)3

k

V (s) = R(s) + γ P (s ∣s, π (s))V (s)i+1

s′

∑ ′
i i

′

33 / 51

34 / 51

(Step-by-step code example)

35 / 51

The game 2048 is a Markov decision process!

: all possible con�gurations of the board
(huge!)

: swiping left, right, up or down.

: encodes the game's dynamic

collapse matching tiles

place a random tile on the board

 if is a winning state, and
otherwise.

Recap example: 2048

S

A

P (s ∣s, a)′

R(s) = 1 s 0

36 / 51

sum 4

sum 6

sum 8

sum 10

sum 12

sum 14

 L

 R

 2 2 U

 D

 L

 R

 2 4 U

 D

 L

 R

 4 2 U

 D

 L

 2 R

 4 U

 D

 L

 2 R

 4 U

 D

 L

 2 R

 4 U

 D

 L

 2 R

 4 U

 D

 L

 2 2 R

 2 U

 D

 L

 2 2 R

 2 U

 D

 L

 R

 4 4 U

 D

 L

 4 R

 4 U

 D

 L

 4 R

 4 U

 D

 L

 2 2 R

 4 U

 D

 L

 2 2 R

 4 U

 D

 L

 4 R

 4 U

 D

 L

 4 R

 4 U

 D

 L

 2 R

 2 U

 D

 L

 4 R

 2 U

 D

 L

 4 R

 2 U

 D

 L

 2 R

 2 2 U

 D

 L

 2 4 R

 U

 D

 L

 2 R

 2 4 U

 D

 L

 2 4 R

 2 U

 D

 L

 4 4 R

 U

 D

 L

 2 R

 2 U

 D

 L

 2 R

 2 2 U

 D

 L

 2 R

 4 2 U

 D

 L

 4 R

 2 2 U

 D

 L

 4 R

 2 2 U

 D

 L

 4 2 R

 2 U

 D

 L

 2 R

 2 U

 D

 L

 2 R

 2 U

 D

 L

 4 R

 2 U

 D

 L

 4 R

 2 U

 D

 L

 4 2 R

 U

 D

 L

 2 2 R

 U

 D

 L

 2 4 R

 2 U

 D

 L

 2 4 R

 4 U

 D

 L

 2 4 R

 4 U

 D

 L

 4 2 R

 2 U

 D

 L

 4 2 R

 4 U

 D

 L

 4 2 R

 4 U

 D

 L

 2 R

 4 2 U

 D

 L

 2 R

 4 4 U

 D

 L

 2 R

 2 4 U

 D

 L

 2 R

 4 4 U

 D

 L

 4 R

 2 4 U

 D

 L

 4 R

 2 4 U

 D

 L

 4 R

 4 2 U

 D

 L

 4 R

 4 2 U

 D

 L

 4 4 R

 2 U

 D

 L

 4 4 R

 2 U

 D

 L

 4 4 R

 4 U

 D

 L

 4 4 R

 4 U

 D

win

 L

 2 2 R

 2 4 U

 D

 L

 2 2 R

 4 4 U

 D

 L

 2 4 R

 2 4 U

 D

 L

 2 2 R

 4 2 U

 D

 L

 4 R

 4 4 U

 D

 L

 4 R

 4 4 U

 D

lose

 L

 2 4 R

 2 2 U

 D

 L

 4 2 R

 4 2 U

 D

 L

 4 4 R

 2 2 U

 D

 L

 4 2 R

 2 2 U

 D

 L

 4 2 R

 4 4 U

 D

 L

 4 4 R

 2 4 U

 D

 L

 4 4 R

 4 2 U

 D

 L

 2 4 R

 4 4 U

 D

The transition model for a board and a winning state at .2 × 2 8

―
Image credits: jdlm.info, The Mathematics of 2048. 37 / 51

https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html

Optimal play for a grid and a winning state at .

See jdlm.info: The Mathematics of 2048.

3 × 3 1024

38 / 51

https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html

Partially observable Markov decision

processes

39 / 51

POMDPs
What if the environment is only partially observable?

The agent does not know in which state it is in.

Therefore, it cannot evaluate the reward associated to the unknown state.

Also, it makes no sense to talk about a policy .

Instead, the agent collects percepts through a sensor model , from
which it can reason about the unknown state .

s

R(s)

π(s)

e P (e∣s)
s

―
Image credits: CS188, UC Berkeley. 40 / 51

https://inst.eecs.berkeley.edu/~cs188/

We will assume that the agent maintains a belief state .

 represents a probability distribution of the current agent's beliefs
over its state;

 denotes the probability under the current belief state;

the belief state is updated as evidence are collected.

This is �ltering!

b

b P(S)

b(s) P (S = s)

b e

41 / 51

e′

b

s ∼ P (s ∣s, a)′ ′

e ∼ P (e ∣s)′ ′ ′

a

42 / 51

Belief MDP
Theorem (Astrom, 1965). The optimal action depends only on the agent's
current belief state.

The optimal policy can be described by a mapping from beliefs to
actions.

It does not depend on the actual state the agent is in.

In other words, POMDPs can be reduced to an MDP in belief-state space,
provided we can de�ne a transition model and a reward function
over belief states.

π (b)∗

P (b ∣b, a)′ ρ

43 / 51

If was the previous belief state and the agent does action and perceives ,
then the new belief state over is given by

Therefore,

where if and otherwise.

b a e

S ′

b = αP(e∣S) P(S ∣s, a)b(s) = α forward(b, a, e).′ ′

s

∑ ′

P (b ∣b, a)′ = P (b , e∣b, a)
e

∑ ′

= P (b ∣b, a, e)P (e∣b, a)
e

∑ ′

= P (b ∣b, a, e) P (e∣b, a, s)P (s ∣b, a)
e

∑ ′

s′

∑ ′ ′

= P (b ∣b, a, e) P (e∣s) P (s ∣s, a)b(s)
e

∑ ′

s′

∑ ′

s

∑ ′

P (b ∣b, a, e) = 1′ b = forward(b, a, e)′ 0

44 / 51

We can also de�ne a reward function for belief states as the expected reward
for the actual state the agent might be in:

ρ(b) = b(s)R(s)
s

∑

45 / 51

b′

ρ(b)′

b

b ∼ P (b ∣b, a)′ ′

a

46 / 51

Although we have reduced POMDPs to MDPs, the Belief MDP we obtain has a
continuous (and usually high-dimensional) state space.

None of the algorithms described earlier directly apply.

In fact, solving POMDPs remains a di�cult problem for which there is no
known e�cient exact algorithm.

Yet, Nature is a POMDP.

47 / 51

Online agents
While it is di�cult to directly derive , a decision-theoretic agent can be
constructed for POMDPs:

The transition and sensor models are represented by a dynamic Bayesian
network;

The dynamic Bayesian network is extended with decision () and utility (
and) nodes to form a dynamic decision network;

A �ltering algorithm is used to incorporate each new percept and action
and to update the belief state representation;

Decisions are made by projecting forward possible action sequences and
choosing (approximately) the best one, in a manner similar to a truncated
Expectiminimax.

π∗

A R

U

48 / 51

At time , the agent must decide what to do.

Shaded nodes represent variables with known values.

The network is unrolled for a �nite horizon.

It includes nodes for the reward of and , but the (estimated)
utility of .

t

Xt+1 Xt+2

Xt+3

49 / 51

Part of the look-ahead solution of the previous decision network:

Each triangular node is a belief state in which the agent makes a decision.

The belief state at each node can be computed by applying a �ltering algorithm to the
sequence of percepts and actions leading to it.

The round nodes correspond to choices by the environment.

A decision can be extracted from the search tree by backing up the (estimated)
utility values from the leaves, taking the average at the chance nodes and taking
the maximum at the decision nodes.

50 / 51

Summary
Sequential decision problems in uncertain environments, called MDPs, are
de�ned by transition model and a reward function.

The utility of a state sequence is the sum of all the rewards over the
sequence, possibly discounted over time.

The solution of an MDP is a policy that associates a decision with every state that the agent
might reach.

An optimal policy maximizes the utility of the state sequence encountered when it is executed.

Value iteration and policy iteration can both be used for solving MDPs.

POMDPs are much more di�cult than MDPs. However, a decision-theoretic
agent can be constructed for those environments.

51 / 51

The end.

51 / 51

