Introduction to Artificial Intelligence

Lecture 8: Making decisions

Prof. Gilles Louppe
g.louppe@uliege.be

w LIEGE
université 1/51

mailto:g.louppe@uliege.be

& e H.2
Lec.a <
:rmw&wf
'FRoScU’ 0
CH.13
Lo
smme QUTING
PROBLEMS UNCERTAINTY
BY SEARCHING .
l Lo 1 Gl
tee3 we.s
an;:::ﬁui‘*" PRORAB®ILSTIC
/ REASONING
0.3
PROTECT 1 sy
.6 . 3
REASONING LEARNING
OVER TiME
$ ow
Lec. §
PRoveLr = MG
DeciSionS
cx.2\ Lec. D
... REANFOREMENT
LEMRNING

2/51

Today

Reasoning under uncertainty and taking decisions:

e Markov decision processes
o MDPs
o Bellman equation
o Value iteration

o Policy iteration

» Partially observable Markov decision processes

Image credits: CS188, UC Berkeley. 3/51

https://inst.eecs.berkeley.edu/~cs188/

Grid world

Assume our agent livesina 3 x 4 grid
environment.

« Noisy movements: actions do not always go
as planned.
o Each action achieves the intended effect with

probability 0.8,

o The rest of the time, with probability 0.2, the action
moves the agent at right angles to the intented
direction.

o |fthereis a wall in the direction the agent would have
been taken, the agent stays put.

e The agent receives rewards at each time step.
o Small 'living' reward each step (can be negative).

o Big rewards come at the end (good or bad).

Goal: maximize sum of rewards.

Image credits: CS188, UC Berkeley.

4/51

https://inst.eecs.berkeley.edu/~cs188/

Deterministic Stochastic actions
actions

Image credits: CS188, UC Berkeley. 5/51

https://inst.eecs.berkeley.edu/~cs188/

Markov decision processes

6/51

Markov decision processes

A Markov decision process (MDP) is a tuple (S, A, P, R) such that:

e Sisasetof states s;
e Ais asetofactions a;

o P s a(stationary) transition model such that P(s'|s, a) denotes the
probability of reaching state s’ if action a is done in state s;

« Risareward function that maps immediate (finite) reward values R(s)
obtained in states s.

7751

-~

Environment

o

s ~ P(s'|s,a)

8/51

Example

S:locations (¢, j) on the grid.
A: [Up, Down, Right, Left].

Transition model: P(s[s, a)

Reward:

R(s) =

—0.3 for non-terminal states
+1 for terminal states

Image credits: CS188, UC Berkeley. 9/51

https://inst.eecs.berkeley.edu/~cs188/

What is Markovian about MDPs?

Given the present state, the future and the past are
independent:

P(st+1|staa’t78t—17at—1a "'730) — P(St—|—1|staa’t)

This is similar to search problems, where the successor
function could only depend on the current state.

Andrey Markov

10/51

Policies

e |In deterministic single-agent search problems,
our goal was to find an optimal plan, or
sequence of actions, from start to goal.

e For MDPs, we want to find an optimal policy
™ :S — A
o A policy 7T maps states to actions.

o An optimal policy is one that maximizes the expected
utility, e.g. the expected sum of rewards.

o An explicit policy defines a reflex agent.
e Expectiminimax did not compute entire

policies, but only some action for a single
state.

Image credits: CS188, UC Berkeley.

Optimal policy when
R(s) = —0.3 for all non-
terminal states s.

11/

https://inst.eecs.berkeley.edu/~cs188/

~|=|=|= |=|~|~|=
) . - [. A
T T | e v i R
2 f f El R(s) <-1.6284 —-0.4278 < R(s) <-0.0850
T N . + (4= (=
RN el b VI <= [+~ =

toor s bl=l=1v] [

—0.0221 <R(s) <0 R(s)>0
(@) (b)

(a) Optimal policy when R(s) = —0.04 for all non-terminal states s. (b) Optimal
policies for four different ranges of R(s).

Depending on R(s), the balance between risk and reward changes from risk-
taking to very conservative.

Utilities over time

What preferences should an agent have over state or reward sequences?

« More orless? [2,3,4] or [1, 2, 2]?

« Now orlater? [1,0,0] or |0, 0, 1]?

Image credits: CS188, UC Berkeley.

https://inst.eecs.berkeley.edu/~cs188/

Theorem
If we assume stationary preferences over reward sequences, i.e. such that
!/ / / /
(70, T1, Ty eee] = [T0s 715 Tgy -oe] = [P1, 72, -0 = [P1, 79, -],

then there are only two coherent ways to assign utilities to sequences:

Additive utility: V(lro,r1,7r2,...]) =10+ 71 + 72 + ...

Discounted utility: V([ro,r1,72,...]) =10 + 71 + ¥Pre + ...
0<vy<1)

14/51

Discounting

— _
e Each time we transition to the _
next state, we multiply in the .
discount once. -
« Why discount? ~ b
<
o Sooner rewards probably do have "
higher utility than later rewards. ~
o Will help our algorithms converge. ~ ‘, A
2
’)/ <
L) ::a ‘_./

Example: discount v = 0.5

. V([1,2,3]) =1+0.5 x 2+ 0.25 x 3
- V([1,2,3]) <V([3,2,1])

Image credits: CS188, UC Berkeley. 15/51

https://inst.eecs.berkeley.edu/~cs188/

Infinite sequences

What if the agent lives forever? Do we get infinite rewards? Comparing reward
sequences with oo utility is problematic.

Solutions:

 Finite horizon: (similar to depth-limited search)
o Terminate episodes after a fixed number of steps .

o Results in non-stationary policies (7 depends on time left).

e Discounting (with 0 < v < 1 and rewards bounded by 4+ Rnax):

- Rmax
V([T())Tl) "')Too]) — Z’yt'r‘t S

Smaller «y results in a shorter horizon.

e Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached.

16/51

Policy evaluation

The expected utility obtained by executing 7r starting in s is given by

V(s) =E | 7' R(st)

So=Ss

where the expectation is with respect to the probability distribution over state
sequences determined by s and 7.

Image credits: CS188, UC Berkeley.

https://inst.eecs.berkeley.edu/~cs188/

Optimal policies

Among all policies the agent could execute, the optimal policy is the policy 7}
that maximizes the expected utility:

7, = argmax V" (s)

Because of discounted utilities, the optimal policy is independent of the starting
state s (see later). Therefore we simply write 7.

18/51

Values of states

The utility, or value, V() of a state is now simply defined as V™ (s).

e Thatis, the expected (discounted) reward if the agent executes an optimal
policy starting from s.

« Notice that R(s) and V (s) are quite different quantities:
o R(S) is the short term reward for having reached S.

o V(S) is the long term total reward from § onward.

19/51

Utilities of the states in Grid World, calculated with v = 1 and R(s)

for non-terminal states.

0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388
1 2 3 4

—0.04

20/51

Policy extraction

Using the principle of maximum expected utility, the optimal action maximizes
the expected utility of the subsequent state. That is,

*(s) = arg maXZ P(s'|s,a)V(s").

Therefore, we can extract the optimal policy provided we can estimate the
utilities of states.

Image credits: CS188, UC Berkeley. 21/51

https://inst.eecs.berkeley.edu/~cs188/

How to be optimal:

Step 1: Take correct first action

) Keep being optimal

Image credits: CS188, UC Berkeley.

https://inst.eecs.berkeley.edu/~cs188/

The Bellman equation

The utility of a state is the immediate reward for that state, plus the expected
discounted utility of the next state, assuming that the agent chooses the
optimal action:

V(s) = R(s) + fymc?xz P(s'|s,a)V(s).

e These equations are called the Bellman equations. They form a system of
n = |S| non-linear equations with as many unknowns.

e The utilities of states, defined as the expected utility of subsequent state
sequences, are solutions of the set of Bellman equations.

23/51

Example

V(1,1) = —0.04 + ymax[0.8V(1,2) + 0.1V(2,1) + 0.1V (1, 1),
0.9V (1,1) 4 0.1V(1,2),
0.9V (1,1) 4+ 0.1V(2, 1),
0.8V(2,1) + 0.1V (1,2) + 0.1V(1, 1)]

24751

Value iteration

Because of the max operator, the Bellman equations are non-linear and solving
the system is problematic.

The value iteration algorithm provides a fixed-point iteration procedure for
computing the state utilities V'(s):

o Let V;(s) be the estimated utility value for s at the é-th iteration step.

e The Bellman update consists in updating simultaneously all the estimates
to make them locally consistent with the Bellman equation:

Vit1(s) := R(s) + ymax) P(s'[s,a)Vi(s)

« Repeat until convergence.

25/51

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states .S, actions A(s), transition model P(s’| s, a),
rewards [2(s), discount ~y
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in .S, initially zero
0, the maximum change in the utility of any state in an iteration

repeat
U—U'"; 50
for each state s in S do

U'ls]— R(s) + v max P(s'|s,a) Uld]
a € A(s) "

if |U'[s] — Uls]| > dthend—|U’[s] — Uls]|
until 6 < €(1 —7)/y
return [/

(Step-by-step code example)

271/5

Convergence

Let V; and V;.1 be successive approximations to the true utility V.
Theorem. For any two approximations V; and V',
/ /
[Virr = Vi lloo <|Vi = Vi]oo-

e Thatis, the Bellman update is a contraction by a factor v on the space of
utility vector.

e Therefore, any two approximations must get closer to each other, and in
particular any approximation must get closer to the true V..

= Value iteration always converges to a unique solution of the Bellman
equations whenever v < 1.

Performance

Since |[Vii1 — V| < 7||Vi — V|, the error is reduced by a factor of at
least «y at each iteration.

Therefore, value iteration converges exponentially fast:

« The maximum initial erroris ||[Vo — V||oo < 2Rmax /(1 — 7).

To reach an error of at most € after IV iterations, we require
7N2RmaX/(1 —7) <e

le+07 ;
1 (4.3)
T e (33) 1e+06 1
0.8 1,/
2 [(L) "3 100000
E 06 {: -3 3
g P g 10000
s 04 1 s 4,1) 2
= P g 1000 ;
= 024 ¢ F &
=] 2 100 {
0 \\i _,“ : 10 F
024 °
0O 5 10 15 20 25 30 0.50.550.60.650.70.75 0.8 0.850.90.95 1

Number of iterations Discount factor y

Problems with value iteration

Value iteration repeats the Bellman updates:

Vis1(s) = R(s) + ymax) P(s'|s,a)Vi(s)

o Problem 1:itis slow — O(|S|*|.A]) per iteration.
e Problem 2:the max at each state rarely changes.

e Problem 3:the policy 7r; extracted from the estimate V; might be optimal
even if V; is inaccurate!

Policy iteration

The policy iteration algorithm instead directly computes the policy (instead of
state values). It alternates the following two steps:

« Policy evaluation: given 7;, calculate V; = V'™ i.e. the utility of each state if
;IS executed.

« Policy improvement: calculate a new policy ;1 using one-step look-ahead
based on V;:

m;11(8) = arg max Z P(s'|s,a)V;(s")

This algorithm is still optimal, and might converge (much) faster under some
conditions.

31/51

Policy evaluation

At the 2-th iteration we have a simplified version of the Bellman equations that
relate the utility of s to the utilities of its neighbors:

Vi(s) = R(s) + 7 Y _ P(s'|s,mi(s))Vi(s)

These equations are now linear because the max operator has been removed.

e forn states, we have n equations with n unknowns;

 this can be solved exactly in O(n3) by standard linear algebra methods.

In some cases O(n3) is too prohibitive. Fortunately, it is not necessary to
perform exact policy evaluation. An approximate solution is sufficient.

One way is to run k iterations of simplified Bellman updates:

Vir(s) = R(s) + v 3 P(s']s, m(s))Vi(s))

This hybrid algorithm is called modified policy iteration.

33/51

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’| s, a)
local variables: U, a vector of utilities for states in S, initially zero
7, a policy vector indexed by state, initially random

repeat
U «— POLICY-EVALUATION(7, U, mdp)
unchanged? < true
for each state s in .S do

if P(s'|s,a) Uls] > S P(s'| s,7[s]) Uls'] then d
i arenizé) 4 (s'|s,a) Uls] § (s"| s,m[s]) Uls'] then do

7[s] «+— argmax Z P(s"|s,a) U[s]
a € A(s) o
unchanged? < false
until unchanged?
return 7

’

(Step-by-step code example)

Recap example: 2048

The game 2048 is a Markov decision process!
« S:all possible configurations of the board
(huge!)
« A:swiping left, right, up or down.
« P(s'|s,a):encodes the game's dynamic

o collapse matching tiles

o place a random tile on the board

« R(s) = 1if sis awinning state, and 0
otherwise.

36/51

) CHD) (D) CHF) () (B

7
\

Na—

The transition model fora 2 x 2 board and a winning state at 8.

Image credits: jdim.info, The Mathematics of 2048.

https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html

Optimal play fora 3 x 3 grid and a winning state at 1024.

See jdim.info: The Mathematics of 2048.

38/51

https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html

Partially observable Markov decision
processes

39/51

POMDPs

What if the environment is only partially observable?

e The agent does not know in which state s itis in.
o Therefore, it cannot evaluate the reward R(s) associated to the unknown state.

o Also, it makes no sense to talk about a policy ﬂ'(S).

« Instead, the agent collects percepts e through a sensor model P(e|s), from
which it can reason about the unknown state s.

Image credits: CS188, UC Berkeley. 40/ 51

https://inst.eecs.berkeley.edu/~cs188/

We will assume that the agent maintains a belief state b.

« brepresents a probability distribution P(.S) of the current agent's beliefs
over its state,

« b(s) denotes the probability P(S = s) under the current belief state;

« the belief state bis updated as evidence e are collected.

This is filtering!

41 /51

-~

Environment

o

s’ ~ P(s'|s,a)

e ~ P(e|s)

42/ 51

Belief MDP

Theorem (Astrom, 1965). The optimal action depends only on the agent's
current belief state.

« The optimal policy can be described by a mapping 7* (b) from beliefs to
actions.

e |t does not depend on the actual state the agent is in.
In other words, POMDPs can be reduced to an MDP in belief-state space,

provided we can define a transition model P(b'|b, a) and a reward function p
over belief states.

If b was the previous belief state and the agent does action a and perceives e,
then the new belief state over S’ is given by

b = aP(elS") Z P(S'|s,a)b(s) = aforward(b,a,€).

Therefore,

P'|b,a) ZP ,elb,a)
—ZPb’\bae (e|b, a)
—ZPb’\banPe]bas (s'|b,a)
—ZPb’\b a,e ZP@]S ZP "|s,a)b
where P(b'|b, a,e) = 1if b’ = forward(b, a, e) and 0 otherwise.

44/ 57

We can also define a reward function for belief states as the expected reward
for the actual state the agent might be in:

p(b) =) b(s)R(s)

45/5

-~

Environment

o

b ~ P(¥|b,a)

46/ 51

Although we have reduced POMDPs to MDPs, the Belief MDP we obtain has a
continuous (and usually high-dimensional) state space.

e None of the algorithms described earlier directly apply.

 In fact, solving POMDPs remains a difficult problem for which there is no
known efficient exact algorithm.

e Yet, Nature is a POMDP.

47751

Online agents

While it is difficult to directly derive w*, a decision-theoretic agent can be
constructed for POMDPs:

e The transition and sensor models are represented by a dynamic Bayesian
network;

e The dynamic Bayesian network is extended with decision (A) and utility (R
and U) nodes to form a dynamic decision network;

o Afiltering algorithm is used to incorporate each new percept and action
and to update the belief state representation;

e Decisions are made by projecting forward possible action sequences and
choosing (approximately) the best one, in a manner similar to a truncated
Expectiminimax.

48/51

Ao Ay A; Ap1 Apo

At time £, the agent must decide what to do.

» Shaded nodes represent variables with known values.
e The networkis unrolled for a finite horizon.

e Itincludes nodes for the reward of X; 1 and X, o, but the (estimated)
utility of X, 3.

A,inP(X,| Ey,) IN_
Et+1 . . N .

Ay in PXKopq | Eper) A
E,.o O ...
Apr in Py | Eqp) e A
E.s O ...
UXn3) JAN JAN JAN /\
10 4 6 3

Part of the look-ahead solution of the previous decision network:

e Each triangular node is a belief state in which the agent makes a decision.

o The belief state at each node can be computed by applying a filtering algorithm to the

sequence of percepts and actions leading to it.

e Theround nodes correspond to choices by the environment.

A decision can be extracted from the search tree by backing up the (estimated)
utility values from the leaves, taking the average at the chance nodes and taking

the maximum at the decision nodes.

50/51

Summary

e Sequential decision problems in uncertain environments, called MDPs, are
defined by transition model and a reward function.

e The utility of a state sequence is the sum of all the rewards over the
sequence, possibly discounted over time.

o The solution of an MDP is a policy that associates a decision with every state that the agent
might reach.

o An optimal policy maximizes the utility of the state sequence encountered when it is executed.

e Value iteration and policy iteration can both be used for solving MDPs.

e POMDPs are much more difficult than MDPs. However, a decision-theoretic
agent can be constructed for those environments.

51/

The end.

51/51

