
Introduction to Arti�cial Intelligence
Lecture 7: Machine learning and neural networks

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 75

mailto:g.louppe@uliege.be

Today

Learning from data is a key component of arti�cial intelligence. In this lecture,
we will introduce the principles of:

Machine learning

Neural networks

―
Credits: CS188, UC Berkeley. 2 / 75

https://inst.eecs.berkeley.edu/~cs188/

Learning agents

What if the environment is unknown?

Learning provides an automated way to modify the agent's internal decision
mechanisms to improve its own performance.

It exposes the agent to reality rather than trying to hardcode reality into the
agent's program.

More generally, learning is useful for any task where it is di�cult to write a
program that performs the task but easy to obtain examples of desired
behavior.

3 / 75

Machine learning

4 / 75

How would you write a computer program that recognizes cats from dogs?

5 / 75

6 / 75

6 / 75

6 / 75

6 / 75

The deep learning approach.

7 / 75

Let be a dataset of example input-
output pairs

where are -dimensional vectors
representing the input values and are the
corresponding output values.

From this data, we want to identify a probabilistic
model

that best explains the data.

Problem statement

d ∼ p(x, y) N

d = {(x , y), (x , y), ..., (x , y)},1 1 2 2 N N

x ∈ Ri
d d

y ∈ Yi

p (y∣x)θ

8 / 75

Regression () and classi�cation () problems.y ∈ R y ∈ {0, 1, ...,C − 1}

―
Credits: Simon J.D. Prince, 2023. 9 / 75

https://udlbook.github.io/udlbook/

Supervised learning with structured outputs ().y ∈ Y

―
Credits: Simon J.D. Prince, 2023. 10 / 75

https://udlbook.github.io/udlbook/

Linear regression
Let us �rst assume that .y ∈ R

―
Credits: CS188, UC Berkeley. 11 / 75

https://inst.eecs.berkeley.edu/~cs188/

Linear regression considers a parameterized linear Gaussian model for its
parametric model of , that is

where and are parameters to determine.

p(y∣x)

p(y∣x) = N (y∣w x + b, σ),T 2

w b

―
Credits: Simon J.D. Prince, 2023. 12 / 75

https://udlbook.github.io/udlbook/

To learn the conditional distribution , we maximize

w.r.t. and over the data .

p(y∣x)

p(y∣x) = exp −
σ2π

1
(

2
1

σ2
(y − (w x + b))T 2

)

w b d = {(x , y)}j j

13 / 75

To learn the conditional distribution , we maximize

w.r.t. and over the data .

By constraining the derivatives of the log-likelihood to , we arrive to the
problem of minimizing

Therefore, minimizing the sum of squared errors corresponds to the MLE
solution for a linear �t, assuming Gaussian noise of �xed variance.

p(y∣x)

p(y∣x) = exp −
σ2π

1
(

2
1

σ2
(y − (w x + b))T 2

)

w b d = {(x , y)}j j

0

L(w, b) = (y − (w x + b)) .
j=1

∑
N

j
T

j
2

13 / 75

Minimizing the negative log-likelihood of a linear Gaussian model reduces to
minimizing the sum of squared residuals.

―
Credits: Simon J.D. Prince, 2023. 14 / 75

https://udlbook.github.io/udlbook/

If we absorb the bias term into the weight vector by adding a constant
feature to the input vector , the solution is given analytically by

where is the input matrix made of the stacked input vectors (including the
constant feature) and is the output vector made of the output values .

b w
x = 10 x w∗

w = (X X) X y,∗ T −1 T

X xj

y yj

15 / 75

Logistic regression
Let us now assume .y ∈ {0, 1}

―
Credits: CS188, UC Berkeley. 16 / 75

https://inst.eecs.berkeley.edu/~cs188/

Logistic regression models the conditional as

where the sigmoid activation function looks like a soft
heavyside:

P (Y = 1∣x) = σ(w x + b),T

σ(x) = 1+exp(−x)
1

17 / 75

Following the principle of maximum likelihood estimation, we have

This loss is an estimator of the cross-entropy

for and .

Unfortunately, there is no closed-form solution for the MLE of and .

arg P (d∣w, b)
w,b
max

= arg P (Y = y ∣x ,w, b)
w,b
max

x ,y ∈di i

∏ i i

= arg σ(w x + b) (1 − σ(w x + b))
w,b
max

x ,y ∈di i

∏ T
i

yi T
i

1−yi

= arg
w,b
min

L(w,b)= ℓ(y , (x ;w,b))∑
i i ŷ i

−y log σ(w x + b) − (1 − y) log(1 − σ(w x + b))
x ,y ∈di i

∑ i
T

i i
T

i

H(p, q) = E [− log q]p

p = Y ∣xi q = ∣xŶ i

w b

18 / 75

Gradient descent

Let denote a loss function de�ned over model parameters (e.g., and
).

To minimize , gradient descent uses local linear information to iteratively
move towards a (local) minimum.

For , a �rst-order approximation around can be de�ned as

L(θ) θ w
b

L(θ)

θ0 θ0

(ϵ; θ) = L(θ) + ϵ ∇ L(θ) + ∣∣ϵ∣∣ .L̂ 0 0
T

θ 0 2γ
1 2

19 / 75

A minimizer of the approximation is given for

which results in the best improvement for the step .

Therefore, model parameters can be updated iteratively using the update rule

where

 are the initial parameters of the model,

 is the learning rate.

(ϵ; θ)L̂ 0

∇ (ϵ; θ)ϵL̂ 0 = 0

= ∇ L(θ) + ϵ,θ 0
γ

1

ϵ = −γ∇ L(θ)θ 0

θ = θ − γ∇ L(θ),t+1 t θ t

θ0

γ

20 / 75

21 / 75

21 / 75

21 / 75

21 / 75

21 / 75

21 / 75

21 / 75

21 / 75

(Step-by-step code example)

22 / 75

Example: imitation learning in Pacman

Can we learn to play Pacman only from observations?

Feature vectors are extracted from the game states . Output
values corresponds to actions .

State-action pairs are collected by observing an expert playing.

We want to learn the actions that the expert would take in a given situation.
That is, learn the mapping .

This is a multiclass classi�cation problem that can be solved by combining
binary classifers.

x = g(s) s

y a

(x, y)

f : R → Ad

―
Credits: CS188, UC Berkeley. 23 / 75

https://inst.eecs.berkeley.edu/~cs188/

The agent observes a very good Minimax-based agent for two games and
updates its weight vectors as data are collected.

0:00 / 0:18

―
Credits: CS188, UC Berkeley. 24 / 75

https://inst.eecs.berkeley.edu/~cs188/

0:00 / 0:18

―
Credits: CS188, UC Berkeley. 25 / 75

https://inst.eecs.berkeley.edu/~cs188/

After two training episodes, the ML-based agents plays.
No more Minimax!

0:00 / 0:21

―
Credits: CS188, UC Berkeley. 26 / 75

https://inst.eecs.berkeley.edu/~cs188/

Deep Learning
(a short introduction)

27 / 75

Shallow networks
A shallow network is a function

that maps multi-dimensional inputs to multi-dimensional outputs through
a hidden layer , such that

where , , and (, ,
) are the model parameters and is an activation function.

f : R → Rdin dout

x y
h = [h , h , ..., h] ∈ R0 1 q−1

q

hj

yk

= σ w x + b(
i=0

∑
d −1in

ji i j)

= v h + c ,
j=0

∑
q−1

kj j k

wji bj vkj ck i = 0, ..., d − 1in j = 0, ..., q − 1
k = 0, ..., d − 1out σ

28 / 75

Single-input single-output networks

We �rst consider the case where and for the single-input
single-output network

where , , , , , , , , and are the model parameters and
where the activation function is .

d = 1in d = 1out

y = v σ(w x+ b) + v σ(w x+ b) + v σ(w x+ b) + c0 0 0 1 1 1 2 2 2

w0 w1 w2 b0 b1 b2 v0 v1 v2 c

σ ReLU(⋅) = max(0, ⋅)

―
Credits: Simon J.D. Prince, 2023. 29 / 75

https://udlbook.github.io/udlbook/

a) The input is on the left, the hidden units , and are in the middle,
and the output is on the right. Computation �ows from left to right.

b) More compact representation of the same network where we omit the bias
terms, the weight labels and the activation functions.

x h0 h1 h2
y

―
Credits: Simon J.D. Prince, 2023. 30 / 75

https://udlbook.github.io/udlbook/

―
Credits: Simon J.D. Prince, 2023. 31 / 75

https://udlbook.github.io/udlbook/

This network de�nes a family of piecewise linear functions where the positions
of the joints, the slopes and the heights of the functions are determined by the
10 parameters , , , , , , , , and .w0 w1 w2 b0 b1 b2 v0 v1 v2 c

―
Credits: Simon J.D. Prince, 2023. 32 / 75

https://udlbook.github.io/udlbook/

Universal approximation theorem

The number of hidden units in a measure of the capacity of the shallow
network. With activation functions, the hidden units de�ne (up to)
joints in the input space, hence de�ning linear regions in the output
space.

The universal approximation theorem states that a single-hidden-layer network
with a �nite number of hidden units can approximate any continuous function
on a compact subset of to arbitrary accuracy.

q hj

ReLU q

q + 1

Rd

33 / 75

―
Credits: Simon J.D. Prince, 2023. 34 / 75

https://udlbook.github.io/udlbook/

Multivariate outputs

To extend the network to multivariate outputs , we
simply add more output units as linear combinations of the hidden units.

For example, a network with two output units and might have the
following structure:

y = [y , y , .., y]0 1 d −1out

y0 y1

h0

h1

h2

h3

y0

y1

= σ w x+ b(0 0)

= σ w x+ b(1 1)

= σ w x+ b(2 2)

= σ w x+ b(3 3)

= v h + v h + v h + v h + c00 0 01 1 02 2 03 3 0

= v h + v h + v h + v h + c10 0 11 1 12 2 13 3 1

35 / 75

a) With two output units, the network can model two functions of the input .

b) The four joints of these functions are constrained to be at the same
positions, but the slopes and heights of the functions can vary independently.

x

―
Credits: Simon J.D. Prince, 2023. 36 / 75

https://udlbook.github.io/udlbook/

Multivariate inputs

To extend the network to multivariate inputs , we extend
the linear relations between the input and the hidden units.

For example, a network with two inputs might have three hidden
units , and de�ned as

x = [x , x , ..., x]0 1 d −1in

x = [x , x]0 1

h0 h1 h2

h0

h1

h2

= σ w x + w x + b(00 0 01 1 0)

= σ w x + w x + b(10 0 11 1 1)

= σ w x + w x + b .(20 0 21 1 2)

37 / 75

―
Credits: Simon J.D. Prince, 2023. 38 / 75

https://udlbook.github.io/udlbook/

Deep networks
We �rst consider the composition of two shallow networks, where the output of
the �rst network is fed as input to the second network as

h0

h1

h2

y

h0
′

h1
′

h2
′

y′

= σ w x+ b(0 0)

= σ w x+ b(1 1)

= σ w x+ b(2 2)

= v h + v h + v h + c0 0 1 1 2 2

= σ w y + b(0
′

0
′)

= σ w y + b(1
′

1
′)

= σ w y + b(2
′

2
′)

= v h + v h + v h + c .0
′
0
′

1
′
1
′

2
′
2
′ ′

―
Credits: Simon J.D. Prince, 2023. 39 / 75

https://udlbook.github.io/udlbook/

With activation functions, this network also describes a family of
piecewise linear functions. However, each linear region de�ned by the hidden
units of the �rst network is further divided by the hidden units of the second
network.

ReLU

―
Credits: Simon J.D. Prince, 2023. 40 / 75

https://udlbook.github.io/udlbook/

Folding interpretation of a deep network:

a) The �rst network folds the input space back on itself.
b) The second network applies its function to the folded space.
c) The �nal output is revealed by unfolding the folded space.

―
Credits: Simon J.D. Prince, 2023. 41 / 75

https://udlbook.github.io/udlbook/

Similarly, composing a multivariate shallow network with a shallow network
further divides the input space into more linear regions.

―
Credits: Simon J.D. Prince, 2023. 42 / 75

https://udlbook.github.io/udlbook/

From composing shallow networks to deep networks

Since the operation from to is linear and the operation from to
 is also linear, their composition in series is linear.

It follows that the composition of the two shallow networks is a special case of
a deep network with two hidden layers where the �rst layer is de�ned as

the second layer is de�ned from the outputs of the �rst layer as

and the output is de�ned as

[h , h , h]0 1 2 y y

[h , h , h]0
′

1
′

2
′

h0

h1

h2

= σ w x+ b(0 0)

= σ w x+ b(1 1)

= σ w x+ b ,(2 2)

h0
′

h1
′

h2
′

= σ w h + w h + w h + b(00
′

0 01
′

1 02
′

2 0
′)

= σ w h + w h + w h + b(10
′

0 11
′

1 12
′

2 1
′)

= σ w h + w h + w j + b ,(20
′

0 21
′

1 22
′

2 2
′)

y = v h + v h + v h + c.0 0
′

1 1
′

2 2
′

43 / 75

―
Credits: Simon J.D. Prince, 2023. 44 / 75

https://udlbook.github.io/udlbook/

―
Credits: Simon J.D. Prince, 2023. 45 / 75

https://udlbook.github.io/udlbook/

General formulation

The computation of a hidden layer can be written in matrix form as

where is the input vector, is the weight matrix of the
hidden layer and is the bias vector.

h = = σ +

⎣
⎢
⎢
⎡ h0

h1
⋮

hq−1
⎦
⎥
⎥
⎤

⎝
⎜
⎜
⎛

⎣
⎢
⎢
⎡ w00

w10
⋮

w(q−1)0

w01
w11
⋮

w(q−1)1

⋯
⋯
⋱
⋯

w0(d −1)in

w1(d −1)in

⋮
w(q−1)(d −1)in

⎦
⎥
⎥
⎤

⎣
⎢
⎢
⎡ x0

x1
⋮

xd −1in
⎦
⎥
⎥
⎤

⎣
⎢
⎢
⎡ b0

b1
⋮

bq−1⎦
⎥
⎥
⎤

⎠
⎟
⎟
⎞

= σ(W x + b)T

x ∈ Rdin W ∈ Rd ×qin

b ∈ Rq

46 / 75

Hidden layers can be composed in series to form a deep network with layers
such that

where is the weight matrix of the -th layer, is the bias
vector of the -th layer, and is the hidden vector of the -th layer.

This model is known as the feedforward neural network, the fully connected
network, or the multilayer perceptron (MLP).

L

h0
h1
h2
⋮

hL

y

= x

= σ(W h + b)1
T

0 1

= σ(W h + b)2
T

1 2

= σ(W h + b)L
T

L−1 L

= h ,L

W ∈ Rℓ
q ×ql−1 ℓ ℓ b ∈ Rℓ

qℓ

ℓ h ∈ Rℓ
qℓ ℓ

47 / 75

Activation functions

The choice of the activation function is crucial for the expressiveness of the
network and the optimization of the model parameters.

0.0

σ

―
Credits: Simon J.D. Prince, 2023. 48 / 75

https://udlbook.github.io/udlbook/

Output layers

For regression, the width of the last layer is set to the dimensionality of
the output and the activation function is the identity , which
results in a vector .

For binary classi�cation, the width of the last layer is set to and the
activation function is the sigmoid , which results in a
single output that models the probability .

For multi-class classi�cation, the sigmoid activation in the last layer can
be generalized to produce a vector of probability estimates

. This activation is the function, where its -th output is
de�ned as

for .

q L

dout σ(⋅) = ⋅
h ∈ RL

dout

q L 1
σ(⋅) = 1+exp(−⋅)

1

h ∈ [0, 1]L p(y = 1∣x)

σ

h ∈ △L
C

p(y = i∣x) Softmax i

Softmax(z) = ,i
exp(z)∑

j=1
C

j

exp(z)i

i = 1, ...,C

49 / 75

Loss functions

The parameters (e.g., and for each layer) of a deep network are
learned by minimizing a loss function over a dataset of
input-output pairs.

The loss function is derived from the likelihood:

For regression, assuming a Gaussian likelihood, the loss is the mean
squared error .

For classi�cation, assuming a categorical likelihood, the loss is the cross-
entropy .

Wℓ bℓ ℓ f (x; θ)
L(θ) d = {(x ,y)}j j

L(θ) = (y − f (x ; θ))
N
1 ∑(x ,y)∈dj j

j j
2

L(θ) = − y log f (x ; θ)
N
1 ∑(x ,y)∈dj j

∑i=1
C

ij i j

50 / 75

(Step-by-step code example)

51 / 75

MLPs on images?

The MLP architecture is appropriate for tabular data, but not for images.

Each pixel of an image is an input feature, leading to a high-dimensional
input vector.

Each hidden unit is connected to all input units, leading to a high-
dimensional weight matrix.

52 / 75

We want to design a neural architecture such that:

in the earliest layers, the network responds similarly to similar patches of
the image, regardless of their location;

the earliest layers focus on local regions of the image, without regard for
the contents of the image in distant regions;

in the later layers, the network combines the information from the earlier
layers to focus on larger and larger regions of the image, eventually
combining all the information from the image to classify the image into a
category.

53 / 75

Convolutional networks
Convolutional neural networks extend fully connected architectures with

convolutional layers acting as local feature detectors;

pooling layers acting as spatial down-samplers.

54 / 75

1d convolution

For the one-dimensional input and the convolutional kernel ,
the discrete convolution is a vector of size such that

x ∈ RW u ∈ Rw

x ⊛ u W − w + 1

(x ⊛ u)[i] = x u .
m=0

∑
w−1

m+i m

55 / 75

Convolutions can implement differential operators:

or crude template matchers:

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4)⊛ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0)

(0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0)⊛ (1, 0, 1) = (3, 0, 3, 0, 0, 0, 3, 0, 6, 0, 3, 0)

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 56 / 75

https://fleuret.org/ee559/

Convolutional layers

A convolutional layer is de�ned by a set of kernels of size ,
where and are the height and width of the kernel, and is the number of
channels of the input.

Assuming as input a 3D tensor , the output of the convolutional
layer is a set of feature maps of size , where and

. Each feature map is the result of convolving the input
with a kernel, that is

K u c× h× w

h w c

x ∈ RC×H×W

K H ×W′ ′ H = H − h+ 1′

W = W − w + 1′ o

o = (x ⊛ u)[j, i] = x uj,i

c=0

∑
C−1

n=0

∑
h−1

m=0

∑
w−1

c,n+j,m+i c,n,m

57 / 75

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 58 / 75

https://fleuret.org/ee559/

Convolutional layers (c-f) are a special case of fully connected layers (a-b)
where hidden units are connected to local regions of the input through shared
weights (the kernels).

The connectivity allows the network to learn local patterns in the input.

Weight sharing allows the network to learn the same patterns at different
locations in the input.

―
Credits: Simon J.D. Prince, 2023. 59 / 75

https://udlbook.github.io/udlbook/

Pooling layers

Pooling layers are used to progressively reduce the spatial size of the
representation, hence capturing longer-range dependencies between features.

Considering a pooling area of size and a 3D input tensor
, max-pooling produces a tensor such that

h× w

x ∈ RC×(rh)×(sw) o ∈ RC×r×s

o = x .c,j,i
n<h,m<w
max c,rj+n,si+m

60 / 75

―
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 61 / 75

https://fleuret.org/ee559/

(Step-by-step code example)

62 / 75

Recurrent networks
When the input is a sequence , the feedforward network can be made
recurrent by computing a sequence of hidden states, where is a
function of both and the previous hidden states in the sequence.

For example,

where is the previous hidden state in the sequence.

x1:T
h1:T ht

xt

h = σ(W x +W h + b),t xh
T

t hh
T

t−1

ht−1

63 / 75

Notice how this is similar to �ltering and dynamic decision networks:

 can be viewed as some current belief state;

 is a sequence of observations;

 is computed from the current belief state and the latest evidence
through some �xed computation (in this case a neural network, instead of
being inferred from the assumed dynamics).

 can also be used to decide on some action, through another network
such that .

ht

x1:T

ht+1 ht xt

ht f

a = f (h ; θ)t t

64 / 75

MariFlow - Self-Driving Mario Kart w/Recurrent NMariFlow - Self-Driving Mario Kart w/Recurrent N……
Later bekijLater bekij…… DelenDelen

A recurrent network playing Mario Kart.

65 / 75

https://www.youtube.com/watch?v=Ipi40cb_RsI

Transformers
Transformers are deep neural networks at the core of large-scale language
models.

―
Credits: Simon J.D. Prince, 2023. 66 / 75

https://udlbook.github.io/udlbook/

For language modeling, transformers de�ne an autoregressive model that
predicts the next word in a sequence given the previous words.

Formally,

where is the next word in the sequence and are the previous words.

p(w) = p(w) p(w ∣w),1:t 1

t=2

∏
T

t 1:t−1

wt w1:t−1

67 / 75

The decoder-only transformer is a stack of transformer blocks that process
the input sequence in parallel using (masked) self-attention.

The output of the last block is used to predict the next word in the sequence, as
in a regular classi�er.

K

―
Credits: Simon J.D. Prince, 2023. 68 / 75

https://udlbook.github.io/udlbook/

Scaling laws

The more data, the better the model.

The more parameters, the better the model.

The more compute, the better the model.

69 / 75

AI beyond Pacman

70 / 75

How AI Helps Autonomous Vehicles See OutsideHow AI Helps Autonomous Vehicles See Outside……
Later bekijLater bekij…… DelenDelen

How AI Helps Autonomous Vehicles See Outside the Box
(See also other episodes from NVIDIA DRIVE Labs)

71 / 75

https://www.youtube.com/watch?v=HS1wV9NMLr8
https://www.youtube.com/playlist?list=PLZHnYvH1qtOYkElUMqYiHDMrGTPnqRhSr

Hydranet (Tesla, 2021)

72 / 75

Camels, Code & Lab Coats: How AI Is AdvaCamels, Code & Lab Coats: How AI Is Adva……
Later bekijLater bekij…… DelenDelen

How machine learning is advancing medicine (Google, 2018)

73 / 75

https://www.youtube.com/watch?v=AbdVsi1VjQY

Summary
Deep learning is a powerful tool for learning from data.

Neural networks are composed of layers of neurons that are connected to
each other.

The weights of the connections are learned by minimizing a loss function.

Convolutional networks are used for image processing.

Transformers are used for language processing.

74 / 75

Chris Bishop, 2020.

For the last forty years we have programmed computers; for the next forty years
we will train them.

75 / 75

The end.

75 / 75

