Introduction to Artificial Intelligence

Lecture 7: Machine learning and neural networks

Prof. Gilles Louppe
g.louppe@uliege.be

w LIEGE
université 1/75


mailto:g.louppe@uliege.be

Today

Learning from data is a key component of artificial intelligence. In this lecture,
we will introduce the principles of:

e Machine learning

e Neural networks

Credits: CS188, UC Berkeley. 2/75


https://inst.eecs.berkeley.edu/~cs188/

Learning agents
What if the environment is unknown?

e Learning provides an automated way to modify the agent's internal decision
mechanisms to improve its own performance.

e |t exposes the agent to reality rather than trying to hardcode reality into the
agent's program.

More generally, learning is useful for any task where it is difficult to write a
program that performs the task but easy to obtain examples of desired
behavior.



Machine learning

4/75



How would you write a computer program that recognizes cats from dogs?

5/75



6/75












/ 7

.t. :,:'
CAT ..00 .‘u /
oo " o o ® ot
s ® s 8 & @ *

(LABELED) sece .o e . OUTPUT

PHOTOS .o s ce oo ® s e
* s e ... e ©
®» L
..' ".’ ..
DOG ..‘ ..o. _'c:
Z RN

The deep learning approach.

7175



Problem statement

Letd ~ p(x,y) be a dataset of NV example input-
output pairs

d= {(Xl,y1), (xQ,y2), coey (XN7 yN)}a

where x; € R? are d-dimensional vectors
representing the input values and y; € ) are the
corresponding output values.

From this data, we want to identify a probabilistic
model

po(y]x)

that best explains the data.



Regression (y € R) and classification (y € {0, 1, ..., C — 1}) problems.

Credits: Simon J.D. Prince, 2023.

Real world input

Model input

6000 square feet,
4 bedrooms,
previously sold for
$235K in 2005,

1 parking spot.

Model

Model output

Real world output

6000

—>| 235
2005

:

Deep learning
model

—> [340—»

Predicted price
is $340k

:

Deep learning
model

“The steak was terrible,
the salad was rotten, and
the soup tasted like socks”

Freezing point

8672
8194
9804
> {8634
8672

:

Deep learning
model

:

Deep learning
model

&

Deep learning
model

—12‘9}_’ is -12.9°C
56.4 Boiling point
is 56.4°C
_’Lum]—' Negative
0.52 Electronica
—> —>
0.89 Bicycle
— —>



https://udlbook.github.io/udlbook/

Credits: Simon J.D. Prince, 2023.

Model input

“Skill without imagination
is craftsmanship and gives us
many useful objects such as

wickerwork picnic baskets.

Imagination without skill

gives us modern art.”

“Teddy bears mixing
sparkling chemicals as
mad scientists, in
a steampunk style.”

-

[183]
204
231
185
204
232

5178
16054
10053

178

8763

7800
9853
4520
4596
987

8300
532
7676
7898
883

Model

Model output

:

Deep learning
model

:

Deep learning
model

&

Deep learning
model

&

Deep learning
model

&

Deep learning
model

4998 >

(6003 >

Real world output

“l draw a jackal-headed
woman in the sand,
Sing of a lover’s fate

sealed by jealous hate”

“L’habileté sans I'imagination
est de l'artisanat et nous
donne de nombreux objets
utiles tels que des paniers
de pique-nique en osier.
Limagination sans habileté
nous donne I'art moderne.”

Supervised learning with structured outputs (y € V).


https://udlbook.github.io/udlbook/

Linear regression

Let us first assume that y € R.

Credits: CS188, UC Berkeley.

11/75


https://inst.eecs.berkeley.edu/~cs188/

=, log [p(yi|lwz; + b,0?)] =—6.57

2.0
O /
= /
5
2 1.0 .
+—
S
© .
p(yilwl.19 + b, 02)
p(y:|w0.46 + b, 02>
0.0 N
1.0

0.0
Input, x

Linear regression considers a parameterized linear Gaussian model for its

parametric model of p(y|x), that is
p(ylx) = N(ylw'x +b,07),

where w and b are parameters to determine.

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

To learn the conditional distribution p(y|x), we maximize

1 1(y — (whx + b))
p(y[x) = oy P (—5 . )

w.rt. w and boverthedatad = {(x;,y,)}.

13/75



To learn the conditional distribution p(y|x), we maximize

1 1(y — (whx + b))
p(y[x) = oy P (—5 . )

w.rt. w and boverthedatad = {(x;,y,)}.

By constraining the derivatives of the log-likelihood to 0, we arrive to the
problem of minimizing

N

L(w,b) = (y; — (w"x; +b))*.

j=1

Therefore, minimizing the sum of squared errors corresponds to the MLE
solution for a linear fit, assuming Gaussian noise of fixed variance.

13/75



> (yi — (wz; +b))? =0.19

2.0

0.0 r r r - -
0.0 1.0

Input, x

Minimizing the negative log-likelihood of a linear Gaussian model reduces to
minimizing the sum of squared residuals.

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

If we absorb the bias term b into the weight vector w by adding a constant
feature xg = 1 to the input vector x, the solution w* is given analytically by

w = (X'X)' X"y,

where X is the input matrix made of the stacked input vectors x; (including the
constant feature) and y is the output vector made of the output values y;.

15/75



Logistic regression

Let us now assumey € {0,1}.

Credits: CS188, UC Berkeley.

16/75


https://inst.eecs.berkeley.edu/~cs188/

Logistic regression models the conditional as

P(Y =1|x) = o(w'x + b),

1

where the sigmoid activation function o (x) = Trexp(—z) |00ks like a soft

heavyside:

1.0 -
0.8 -
0.6 -
0.4 -
0.2 -

0.0 -
I I I I |

i i i i
=100 75 50 25 0.0 25 5.0 7.5 10.0

17775



Following the principle of maximum likelihood estimation, we have

arg max P(d|w, b)

w,b

= arg max J P(Y = y;|x;,w,b)
W,b xi,ind

= arg Hvlv?gc J o(wix; +b)¥ (1 —o(wix; +b) ¥
x;,yi €d

= arg migl Z —yilogo(w' x; +b) — (1 —y;)log(l — o(w' x; + b))
W x;,yi€d

7

~

‘C(Wab)zzl g(yzag(xzawab))
This loss is an estimator of the cross-entropy

H(p,q) = E,[—logq]
forp =Y|x; and ¢ = Y\xz
Unfortunately, there is no closed-form solution for the MLE of w and b.

18/75



Gradient descent

Let £(#) denote a loss function defined over model parameters € (e.g., w and
b).

To minimize L£(0), gradient descent uses local linear information to iteratively
move towards a (local) minimum.

For 6y, a first-order approximation around 6y can be defined as

A

1
L(€;0y) = L(6) + €' Vo L(6y) + %HeHz.

Bo= —0.50,y=0.50

i i i i i |
s —4 -2 1] 2 4 6

19/75



A minimizer of the approximation ﬁ(e; 6o) is given for
V. L(e;6p) =0
1
— Vgﬁ(eo) + ;6,

which results in the best improvement for the step e = —yV 4L (6y).

Therefore, model parameters can be updated iteratively using the update rule
011 = 0, — YV L(6;),

where

o Oy are the initial parameters of the model|,

e 7yis thelearning rate.

20/75



B, = —0.50, y =0.50

|
o
4



f,= —0.78, y=0.50




f.= —1.19,y=0.50

|
o
4



f:= —1.76, y = 0.50




Bs= — 2.45,y=0.50




Bs = —3.06, y = 0.50




Bs= —3.33,y=0.50




6= —3.36, y=0.50




(Step-by-step code example)

22/75



Example: imitation learning in Pacman

Can we learn to play Pacman only from observations?
« Feature vectors x = g(s) are extracted from the game states s. Output
values y corresponds to actions a .
» State-action pairs (x, y) are collected by observing an expert playing.

 We want to learn the actions that the expert would take in a given situation.
That is, learn the mapping f : R? — A.

e Thisis a multiclass classification problem that can be solved by combining
binary classifers.

Credits: ,UC Berkeley.


https://inst.eecs.berkeley.edu/~cs188/

. ¢ o o e o o .
+ o - ® o o o e o e o e @ %
B . s . . .

SCORE: 0
» 0:00/0:18 LN i

The agent observes a very good Minimax-based agent for two games and
updates its weight vectors as data are collected.

Credits: CS188, UC Berkeley. 24775


https://inst.eecs.berkeley.edu/~cs188/

® e o o e o o .
. ® - e o o o o o o o e @ .
3 . . ® . .
e o o o o o o o ‘ ¢ & & o+ & o s o o
SCORE: 0 '
» 0:00/0:18 N M H

Credits: CS188, UC Berkeley. 25/75


https://inst.eecs.berkeley.edu/~cs188/

« s s o s o o .

° ® - ¢ & o o o o o o e & .

v . . . 3 .

* o o o o o o .e. e o o o o o o o
h

SCORE: 0
» 0:00/0:21 N i

After two training episodes, the ML-based agents plays.
No more Minimax!

Credits: CS188, UC Berkeley. 26/75


https://inst.eecs.berkeley.edu/~cs188/

Deep Learning

(a short introduction)

27175



Shallow networks

A shallow network is a function
f . Rdin — Rdout

that maps multi-dimensional inputs x to multi-dimensional outputs y through
a hidden layerh = |hg, h1, ..., hg—1] € RY, such that

dip, —1
h; =0 (Z Wi T + bj>
=0
qg—1

gk = Y _vkihj + cx,

7=0

where wj;, bj, vgjand ey (0 =0,...,din — 1,7 =0,...,q — 1,
k=0,...,dowt — 1) are the model parameters and ¢ is an activation function.

28/75



Single-input single-output networks

We first consider the case where di, = 1 and dyyt = 1 for the single-input
single-output network

y = voo(woz + by) + vio(wix + by) + voo(wex + by) + ¢

where wy, w1, wa, by, b1, by, vy, v1, v2 and c are the model parameters and
where the activation function o is ReLU(-) = max(0, -).

5.0

ReLU(-)

5.0 ,
5.0 0.0

5.0

Credits: Simon J.D. Prince, 2023.

29/75


https://udlbook.github.io/udlbook/

a) The input x is on the left, the hidden units hy, h; and hsy are in the middle,
and the output y is on the right. Computation flows from left to right.

b) More compact representation of the same network where we omit the bias
terms, the weight labels and the activation functions.

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

Credits: Simon J.D. Prince, 2023.

a), b) c)
+—
3
500
3
(@]
10 wox + b() w1x + /)| Wo X + bQ
0.0 10 2.0 0.0 10 2000 10 2.0
d) e) f)
1.0
4
>
So0
>
(@]
;. ho = o (wox + bo) h1 = o (wix + by) he = o (wex + by)
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
g) h i)
1.0 )
+—
>
So0
>
(@]
. voho v1hq vohg
00 10 2.0 0.0 1.0 2.0 0.0 10 2.0
Input, Input,
1.0
=
)
200
+J
3
(@]

0.0

{voho +v1hy + vahy + ¢

1.0 2.0
Input, x


https://udlbook.github.io/udlbook/

1.0
=
5
2 0.0
+J
>
©)
B :
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Input, Input, Input,

This network defines a family of piecewise linear functions where the positions
of the joints, the slopes and the heights of the functions are determined by the

10 parameters wy, wy, woy, by, by, by, vy, V1, V9 and c.

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

Universal approximation theorem

The number g of hidden units k; in a measure of the capacity of the shallow
network. With ReLLU activation functions, the hidden units define (up to) g
joints in the input space, hence defining g + 1 linear regions in the output
space.

The universal approximation theorem states that a single-hidden-layer network
with a finite number of hidden units can approximate any continuous function
on a compact subset of R? to arbitrary accuracy.



a) b)
1.0 - - - -
5 linear regions N 2N |20 linear regions N
,/'\\ I/ 1L P\ 'I, Lo, III
\ 4 % ] 5\ /
’ ! /
> \ i \ f \ i
- \ / \ / \ /
) E \ / E 2 ] E 7
) A\ / " / /
49-0 0 \\ \\ 2 /l
v 4
) ‘\‘ I/ \\‘ l/ ‘\‘ ,/
@) \ J \ 4 \ !
\ ! 1 ] 1 1
\‘ 1’ \‘ / \‘ ,l
\\_’/ \\-’/ \\_’/
-1.0 — - - —
0.0 1.0 2.0 0.0 1.0 2.00.0 1.0 2.0
Input, Input, Input, =

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

Multivariate outputs

To extend the network to multivariate outputs y = [yo, Y1, --; Yd, . —1], We
simply add more output units as linear combinations of the hidden units.

For example, a network with two output units yy and y; might have the
following structure:

ho = o (woz + by)
hi =0 (wiz+ by)
hy = o (wax + b2)
hs = o (wsx + bs)
Yo = vooho + vo1h1 + vo2he + vozhs + co

v
y1 = vioho + vi1h1 4+ vishes + vishs + &1

35/75



0 20
Input,

a) With two output units, the network can model two functions of the input .

b) The four joints of these functions are constrained to be at the same
positions, but the slopes and heights of the functions can vary independently.

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

Multivariate inputs

To extend the network to multivariate inputs x = [z, 1, ..., 4, 1], we extend
the linear relations between the input and the hidden units.

For example, a network with two inputs x = [z, 1] might have three hidden
units hg, h; and hy defined as

ho = o (wooxo + worx1 + bo)
h1 = o (wioxo + wiiz1 + br)

he = o (waoxo + worx; + ba).

37/75



Credits: Simon J.D. Prince, 2023.

woozo + worz1 +bo b)) wiowo +wiiws + by C)_ WaZo + w2121 + ba

N

d)1 O}_lo = o(wooTo + woi1 1 + bo)e}ll = o(wiozo + w111 + bl)f)}Q = o(waomo + w211 + ba)

N

/

0.0 1.0-1.0
= voho + vih1 + vohs + ¢

oot 10 -1.0
nput, rp .
P j) 10%

0.0
Input, 1

Input, x4
o
=

0.0
Input, x;

38/75


https://udlbook.github.io/udlbook/

Deep networks

We first consider the composition of two shallow networks, where the output of
the first network is fed as input to the second network as

ho = a(wga: + bg)
hl — 0'(’(1)133 -+ bl)

hz = a(w2a: + b2)
y = vohg +v1h; +v2hy +c
o = o (woy + by)

| =0 (wy +b)
o = 0 (Why + b))
y' = vyhy + vihy +vghl + .

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

With ReLLU activation functions, this network also describes a family of
piecewise linear functions. However, each linear region defined by the hidden
units of the first network is further divided by the hidden units of the second

network.

b) i, Network 1 C)1o Network 2

Output, y
Output, 3/

I

|

1
_1. Ll _1. L)
Yo —o—, 9% 0.0 1.0
Input, z Input, y

d) Network 1+2

Credits: Simon J.D. Prince, 2023. 40/75


https://udlbook.github.io/udlbook/

b) C) e

{
<

Output, y
Output, 3/
Output, 3/

Input,

Input, = Input, y

Folding interpretation of a deep network:

a) The first network folds the input space back on itself.
b) The second network applies its function to the folded space.
c) The final output is revealed by unfolding the folded space.

Credits: Simon J.D. Prince, 2023.

41/75


https://udlbook.github.io/udlbook/

Similarly, composing a multivariate shallow network with a shallow network

further divides the input space into more linear regions.

d
) Output, 3/

e

Input, y 0
1.0 0.0

1.0

0 .
Input, x1

Credits: Simon J.D. Prince, 2023.

42/75


https://udlbook.github.io/udlbook/

From composing shallow networks to deep networks

Since the operation from [hg, h1, h2] to y is linear and the operation from y to

[ho, B, hy] is also linear, their composition in series is linear.

It follows that the composition of the two shallow networks is a special case of
a deep network with two hidden layers where the first layer is defined as

ho = o (woz + by)
h1 :0(w1m+b1)
hy = o (waz + b2),

the second layer is defined from the outputs of the first layer as

o = 0 (wooho + wy b1 + wyyhe + by)
1 = o (wigho + wy hy + wiyhe + b))
5 = o (whoho + why h1 + whyja + by),

and the output is defined as

y = vohy +vih] +ve2hi +c

43/75



,2023.



https://udlbook.github.io/udlbook/

Credits: Simon J.D. Prince, 2023.

a), b) )
5
[a N
+ 0.0
>
(@)
10 Wooho + w(/nIhl + woohabh wigho + w/lllhl + wiphsb) whoho + w’21{11 + whyhabh
0.0 1.0 20 0.0 10 2.0 0.0 10 2.0
d) e) )
1.0
)
=]
5?00- ]
(@)
10 hy =a() 1=0() hy =a()
00 10 2000 10 2000 10 20
g, h) 1)
4
a
500 ]
=]
(@)
0 vohg vph} vohh
0.0 1.0 2.0 0.0 10 2.0 0.0 1.0 2.0
Input, j) Input, Input,
10

vohgy +vih} + vahh + ¢

0.0 1.0
Input, z

2.0


https://udlbook.github.io/udlbook/

General formulation

The computation of a hidden layer can be written in matrix form as

o
h = h;l =0
| frg-1

= o(Wix +b)

where x € R% s the input vector, W & R%:*4 is the weight matrix of the
hidden layer and b € R? is the bias vector.

| W(g—1)0

woo
W10

Wo1
W11

W(g—-1)1

Wo(dy, —1)
W1 (din—1)

W(g—1)(din—1) _

Zo
L1

-wdin -1 -

46/75



Hidden layers can be composed in series to form a deep network with L layers
such that

h() =X
h; = 0(W7ihy + b;)
hy = c(Wih; +b,)

h, =0(Wrih, 1 +byp)
y hLv

where W, € R%Z-17% js the weight matrix of the £-th layer, by € R% is the bias
vector of the £-th layer,and hy € R% is the hidden vector of the £-th layer.

This model is known as the feedforward neural network, the fully connected
network, or the multilayer perceptron (MLP).

47775



Activation functions

The choice of the activation function o is crucial for the expressiveness of the
network and the optimization of the model parameters.

a) b) c)

2.0
. e | softplus[z]
) sigl2] | LRelU[z]
© GelLU[z]
1 1 SiLU[Z]
1 tanh[z} - PRelLU [Z, 025] i
-4.0 0.0 4.0 -4.0 0.0 4.0-4.0 0.0 4.0
d e f
), . ) )
| swish[z,1.4]
] =..swish[z, 1.0]
-2.0 : - -
-4.0 0.0 4.0 -4.0 0.0 4.0-4.0 0.0 4.0
< Z z

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

Output layers

« Forregression, the width g of the last layer L is set to the dimensionality of
the output doyt and the activation function is the identity o(-) = -, which
results in a vector hy, € R%ut

e Forbinary classification, the width q of the last layer L is set to 1 and the

activation function is the sigmoid o () = 1—i—e+p(—-)’ which results in a

single output Az, € [0, 1] that models the probability p(y = 1|x).

e For multi-class classification, the sigmoid activation o in the last layer can
be generalized to produce a vector hy, € NY of probability estimates
p(y = i|x). This activation is the Softmax function, where its i-th output is
defined as

Softmax(z); = exp(z:) :

> exp(z))

fort =1,...,C.

49/75



Loss functions

The parameters (e.g., W and by for each layer £) of a deep network f(x; @) are
learned by minimizing a loss function £(#) over a datasetd = {(x;,y;)} of
input-output pairs.

The loss function is derived from the likelihood:

e Forregression, assuming a Gaussian likelihood, the loss is the mean
squared error £(0) = ~+ D (xsyea i — F(x530))%.

e For classification, assuming a categorical likelihood, the loss is the cross-

entropy L(6) = —% (x;,y;)ed Zlc:l yi; log fi(x;;0).

50/75



(Step-by-step code example)

51/75



MLPs on images?

The MLP architecture is appropriate for tabular data, but not for images.

e Each pixel of an image is an input feature, leading to a high-dimensional
input vector.

e Each hidden unit is connected to all input units, leading to a high-
dimensional weight matrix.

52/75



We want to design a neural architecture such that:

 inthe earliest layers, the network responds similarly to similar patches of
the image, regardless of their location;

« the earliest layers focus on local regions of the image, without regard for
the contents of the image in distant regions;

e in the later layers, the network combines the information from the earlier
layers to focus on larger and larger regions of the image, eventually
combining all the information from the image to classify the image into a
category.



Convolutional networks

Convolutional neural networks extend fully connected architectures with

e convolutional layers acting as local feature detectors;

e pooling layers acting as spatial down-samplers.

convolution linear max convolution
rectification pooling

convolution layer pooling layer

54/75



1d convolution

For the one-dimensional input x € R" and the convolutional kernel u € RY,
the discrete convolution x ® uis a vector of size W — w + 1 such that

@] = 3 i1

55/75



Convolutions can implement differential operators:

(0,0,0,0,1,2,3,4,4,4,4)® (—-1,1) = (0,0,0,1,1,1,1,0,0,0)

m@m__rrm_

or crude template matchers:

(0,0,3,0,0,0,0,0,3,0,3,0,0,0) ® (1,0,1) = (3,0,3,0,0,0,3,0,6,0,3,0)

UL e IHLL

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.

1

56/75


https://fleuret.org/ee559/

Convolutional layers

A convolutional layer is defined by a set of K kernels u of size ¢ x h X w,
where h and w are the height and width of the kernel, and cis the number of
channels of the input.

Assuming as input a 3D tensor x € REHXW the output of the convolutional
layer is a set of K feature maps of size H' x W' where H' = H — h + 1 and

W' =W — w + 1. Each feature map o is the result of convolving the input
with a kernel, that is

Q
—
>
=

~1 h-1 w—1

0j; = (x®u)[j,i] =

Xe,n+j,m+iUen,m

A
A

0

o)
I
S
IL
3
IL

57/75



Input

Qutput
w
T Kernel
W
H h
—>
C

e

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 58/75


https://fleuret.org/ee559/

b) T1 T T3 T4 Ts Te

Convolutional layers (c-f) are a special case of fully connected layers (a-b)
where hidden units are connected to local regions of the input through shared
weights (the kernels).

e The connectivity allows the network to learn local patterns in the input.

e Weight sharing allows the network to learn the same patterns at different
locations in the input.

Credits: Simon J.D. Prince, 2023.


https://udlbook.github.io/udlbook/

Pooling layers

Pooling layers are used to progressively reduce the spatial size of the
representation, hence capturing longer-range dependencies between features.

Considering a pooling area of size h X w and a 3D input tensor
x € RE*(rh)x(sw) max-pooling produces a tensor o € RE*"*5 such that

OC,j,i - max xc,’l“j—f—’n,si—l—m .
n<h,m<w

60/75



Input

Output

sh

Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 61/75


https://fleuret.org/ee559/

(Step-by-step code example)

62/75



Recurrent networks

When the input is a sequence x1.7, the feedforward network can be made
recurrent by computing a sequence hy.7 of hidden states, where h; is a
function of both x; and the previous hidden states in the sequence.

For example,
hy = (W% + Wyhe 1 +b),

where h;_ is the previous hidden state in the sequence.

63/75



Notice how this is similar to filtering and dynamic decision networks:

e h,; can be viewed as some current belief state;
e Xi.7 IS @ sequence of observations;

e h; .1 is computed from the current belief state h; and the latest evidence x;
through some fixed computation (in this case a neural network, instead of
being inferred from the assumed dynamics).

« h; can also be used to decide on some action, through another network f
such thata; = f(hy; ).

64/75



A recurrent network playing Mario Kart.

65/75


https://www.youtube.com/watch?v=Ipi40cb_RsI

Credits: Simon J.D. Prince, 2023.

Transformers

Transformers are deep neural networks at the core of large-scale language

models.

a) Input sentence

[Theﬁshlivedinthe j—»E E E E E—»

Word embeddings

7~

The fish lived

The fish lived

~

in the

in the blue

Model

Large language
model (LLM)

—ly

Output
e

sea 22%
blue 17%
river 16%
ocean 14%
when 0.01%
under 0.01%

bicycle 0.001%
—

Choose next token: "blue"

Large language
model (LLM)

sea 32%
river 17%
ocean 16%
lake 14%
when 0.01%
under 0.01%

bicycle 0.001%

66/75


https://udlbook.github.io/udlbook/

For language modeling, transformers define an autoregressive model that
predicts the next word in a sequence given the previous words.

Formally,

T
p(wlt HP ’wt|w1t 1
t=2

where wy is the next word in the sequence and wy.;—1 are the previous words.

67/75



Word Transformer with Linear + Probability of

embeddings masked attention softmax target token
o mmm—————— N f T T T T T T T TIeTOT e TTTS \
<start>—{ [ T[T I | NE==N ~( I
1 1 1 1
1 1 1
—=TTTTTIH ! - i ~( I I takes
1
—T T = ~C
takes i i E "C)_ E (XK) I I | | I |great
great—i[ T T T T ] J— & - —( [0 ] courage
I )
1 1 1 1
cowrage—[ TTTTTTH | -~ 5 ~( [ E o
1 1 1 1
tO—";ED]]]]} i —~( - | ~( D et
[} 1
1 1 1
let—{ - J Lo Ui (] yourself
----------- e PR N N
Eg 22
T c e
5 &
&
5

The decoder-only transformer is a stack of K transformer blocks that process
the input sequence in parallel using (masked) self-attention.

The output of the last block is used to predict the next word in the sequence, as
in a regular classifier.

Credits: Simon J.D. Prince, 2023. 68/75


https://udlbook.github.io/udlbook/

4.2

— L=(D/5.4-10!3)70.09 | 5.6 —— L=(N/8.8:1013)~0.076
3.9
4.8
- 4.0
S
B 3.3 3.2
F 3
3.0
2.4
L = (Crinf2.3-108)70-050
2 : : : : 2.7 : : : : :
10— 1077 105 1072 10°' 10! 108 10° 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding
[ ]
Scaling laws

e The more data, the better the model.
e The more parameters, the better the model.

e The more compute, the better the model.

69 / /¢
0Y/ /3



Al beyond Pacman



‘ {ow Al Helps Autonom@uis Vehicles See Outside... G — ~»
- — . - — ——Laterlielil. . "\Delen

How Al Helps Autonomous Vehicles See Outside the Box
(See also other episodes from NVIDIA DRIVE Labs)

71/75


https://www.youtube.com/watch?v=HS1wV9NMLr8
https://www.youtube.com/playlist?list=PLZHnYvH1qtOYkElUMqYiHDMrGTPnqRhSr

Trunk Trunk Trunk

%9

S

Image-te-VE translorm

_ Transformer - e b Pt —

B PN | BFEN
RegNet ‘ RegNet ‘ RegNet
Ractify | Rectity Rectity
[N © | Bl © | epeaszer R

Hydranet (Tesla, 2021)

72175



How machine learning is advancing medicine (Google, 2018)

73/75


https://www.youtube.com/watch?v=AbdVsi1VjQY

Summary

Deep learning is a powerful tool for learning from data.

Neural networks are composed of layers of neurons that are connected to
each other.

The weights of the connections are learned by minimizing a loss function.

Convolutional networks are used for image processing.

Transformers are used for language processing.

/4775



For the last forty years we have programmed computers; for the next forty years
we will train them.

Chris Bishop, 2020.

/5/75



The end.

/5/75



