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Markov models
Markov processes

Inference tasks

Hidden Markov models

Filters

Kalman �lter

Particle �lter

Today
Maintain a belief state about the world, and update it as time passes and
evidence is collected.

Do not overlook this lecture!

―
Image credits: CS188, UC Berkeley. 2 / 70

https://inst.eecs.berkeley.edu/~cs188/


Pacman revenge: How to make good use of the sonar readings?

0:00 / 1:00

―
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Markov models
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Modelling the passage of time

We will consider the world as a discrete series of time slices, each of which
contains a set of random variables:

 denotes the set of unobservable state variables at time .

 denotes the set of observable evidence variables at time .

Xt t

Et t
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We specify

a prior  that de�nes our inital belief state over hidden state variables,

a transition model  (for ) that de�nes the probability
distribution over the latest state variables, given the previous (unobserved)
values,

a sensor model  (for ) that de�nes the probability
distribution over the latest evidence variables, given all previous (observed
and unobserved) values.

P(X )0

P(X ∣X )t 0:t−1 t > 0

P(E ∣X ,E )t 0:t 0:t−1 t > 0
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Markov processes

Markov assumption

The current state of the world depends only on its immediate previous state(s),
i.e.,  depends on only a bounded subset of .

Random processes that satisfy this assumption are called Markov processes or
Markov chains.

First-order Markov processes

Markov processes such that

i.e.,  and  are conditionally independent given .

Xt X0:t−1

P(X ∣X ) = P(X ∣X )t 0:t−1 t t−1

Xt X0:t−2 Xt−1
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Sensor Markov assumption

We make a (�rst-order) sensor Markov assumption

Stationarity assumption

The transition and the sensor models are the same for all  (i.e., the laws of
physics do not change with time).

P(E ∣X ,E ) = P(E ∣X ).t 0:t 0:t−1 t t

t
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Joint distribution

A Markov chain coupled with a sensor model can be represented as a growable
Bayesian network, unrolled in�nitely through time.

The joint distribution of all its variables up to  ist

P(X ,E ) = P(X ) P(X ∣X )P(E ∣X ).0:t 1:t 0
i=1

∏
t

i i−1 i i
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?

?

?

Example: Will you take your umbrella today?

P(Umbrella ∣Rain )t t

P(Rain ∣Umbrella )t 0:t−1

P(Rain ∣Rain )t+2 t

―
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The transition model  can equivalently be represented by a
state transition diagram.

P(Rain ∣Rain )t t−1
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Inference tasks
Prediction:  for 

Computing the posterior distribution over future states.

Used for evaluation of possible action sequences.

Filtering: 

Filtering is what a rational agent does to keep track of the current hidden state , its belief
state, so that rational decisions can be made.

Smoothing:  for 

Computing the posterior distribution over past states.

Used for building better estimates, since it incorporates more evidence.

Essential for learning.

Most likely explanation: 
Decoding with a noisy channel, speech recognition, etc.

P(X ∣e )t+k 1:t k > 0

P(X ∣e )t 1:t

Xt

P(X ∣e )k 1:t 0 ≤ k < t

argmax P (x ∣e )x1:t 1:t 1:t
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(Predict) Push  forward
through the transition model.

(Update) Update  with the
evidence , given the sensor model.

Base cases

P(X )2 = P(X ,x )
x1

∑ 2 1

= P (x )P(X ∣x )
x1

∑ 1 2 1

P(X )1

P(X ∣e )1 1 =
P (e )1

P(e ∣X )P(X )1 1 1

∝ P(e ∣X )P(X )1 1 1

P(X )1
e1

―
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Prediction

To predict the future :

Push the prior belief state  through the transition model:

Repeat up to , using  to compute .

P(X ∣e )t+k 1:t

P(X ∣e )t 1:t

P(X ∣e ) = P(X ∣x )P (x ∣e )t+1 1:t
xt

∑ t+1 t t 1:t

t + k P(X ∣e )t+k−1 1:t P(X ∣e )t+k 1:t

―
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Random dynamics

0:00 / 1:20

―
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Circular dynamics

0:00 / 0:32

―
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Whirlpool dynamics

0:00 / 0:41

―
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As time passes, uncertainty (usually) increases in the absence of new evidence.

―
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Stationary distributions
What if ?

For most chains, the in�uence of the initial distribution gets lesser and
lesser over time.

Eventually, the distribution converges to a �xed point, called a stationary
distribution.

This distribution is such that

t→∞

P(X ) = P(X ) = P(X ∣x )P (x ).∞ ∞+1
x∞

∑ ∞+1 ∞ ∞
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0.9

0.1

0.3

0.7

Example

Therefore, .

Which implies that  and .

Xt−1 Xt P

sun sun

sun rain

rain sun

rain rain

P (X = sun) =∞

=

=

P (X = sun)∞+1

P (X = sun∣X = sun)P (X = sun)∞+1 ∞ ∞

+ P (X = sun∣X = rain)P (X = rain)∞+1 ∞ ∞

0.9P (X = sun) + 0.3P (X = rain)∞ ∞

P (X = sun) = 3P (X = rain)∞ ∞

P (X = sun) =∞ 4
3 P (X = rain) =∞ 4

1
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Filtering

With new evidence, uncertainty decreases. Beliefs get reweighted. But how?
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Bayes �lter

An agent maintains a belief state estimate  and updates it as new
evidences  are collected.

This process can be implemented as a recursive Bayesian estimation
procedure  that alternates between
two steps:

(Predict step): Project the current belief state forward from  to 
through the transition model.

(Update step): Update this new state using the evidence .

P(X ∣e )t 1:t

et+1

P(X ∣e ) = f (e ,P(X ∣e ))t+1 1:t+1 t+1 t 1:t

t t + 1

et+1
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Formally, the Bayes �lter is de�ned as

where

the normalization constant

is used to make probabilities sum to 1;

in the last expression, the �rst and second terms are given by the model
while the third is obtained recursively.

P(X ∣e )t+1 1:t+1 = P(X ∣e , e )t+1 1:t t+1

∝ P(e ∣X , e )P(X ∣e )t+1 t+1 1:t t+1 1:t

∝ P(e ∣X )P(X ∣e )t+1 t+1 t+1 1:t

∝ P(e ∣X ) P(X ∣x , e )P (x ∣e )t+1 t+1
xt

∑ t+1 t 1:t t 1:t

∝ P(e ∣X ) P(X ∣x )P (x ∣e )t+1 t+1
xt

∑ t+1 t t 1:t

Z = P (e ∣e ) = P (e ∣x )P (x ∣e )t+1 1:t
xt+1

∑ t+1 t+1 t+1 1:t
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We can think of  as a message  that is propagated forward along
the sequence, modi�ed by each transition and updated by each new
observation.

Thus, the process can be implemented as . Its
complexity is constant (in time and space) with .

P(X ∣e )t 1:t f1:t

f ∝ forward(f , e )1:t+1 1:t t+1

t
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Example

Rt−1 P (R )t

true 0.7

false 0.3

Rt P (U )t

true 0.9

false 0.2
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Ghostbusters with a Bayes �lter

0:00 / 0:36

―
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Smoothing
We want to compute  for .

Dividing the evidence  into  and , we have

P(X ∣e )k 1:t 0 ≤ k < t

e1:t e1:k ek+1:t

P(X ∣e )k 1:t = P(X ∣e , e )k 1:k k+1:t

∝ P(X ∣e )P(e ∣X , e )k 1:k k+1:t k 1:k

∝ P(X ∣e )P(e ∣X ).k 1:k k+1:t k
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Let the backward message  correspond to . Then,

where  is a pointwise multiplication of vectors.

This backward message can be computed using backwards recursion:

The �rst and last factors are given by the model. The second factor is obtained
recursively. Therefore,

bk+1:t P(e ∣X )k+1:t k

P(X ∣e ) = α f × b ,k 1:t 1:k k+1:t

×

P(e ∣X )k+1:t k = P(e ∣X ,x )P(x ∣X )
xk+1

∑ k+1:t k k+1 k+1 k

= P (e ∣x )P(x ∣X )
xk+1

∑ k+1:t k+1 k+1 k

= P (e ∣x )P (e ∣x )P(x ∣X ).
xk+1

∑ k+1 k+1 k+2:t k+1 k+1 k

b = backward(b , e ).k+1:t k+2:t k+1
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Forward-backward algorithm

Complexity:

Smoothing for a particular time step  takes: 

Smoothing a whole sequence (because of caching): 

k O(t)

O(t)
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Example
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Most likely explanation

―
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Suppose that  is the umbrella sequence.

What is the weather sequence that is the most likely to explain this?

Among all  sequences, is there an (e�cient) way to �nd the most likely
one?

[true, true, false, true, true]

25

―
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The most likely sequence is not the sequence of the most likely states!

The most likely path to each , is the most likely path to some  plus one
more step. Therefore,

xt+1 xt

P(x ,X ∣e )
x1:t
max 1:t t+1 1:t+1

∝ P(e ∣X ) (P(X ∣x ) P(x ,x ∣e )).t+1 t+1
xt

max t+1 t
x1:t−1
max 1:t−1 t 1:t
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This is identical to �ltering, except that

the forward message  is replaced with

where  gives the probability of the most likely path to state .

The update has its sum replaced by max.

The resulting algorithm is called the Viterbi algorithm, which computes the
most likely explanation as

Its complexity is linear in , the length of the sequence.

f = P(X ∣e )1:t t 1:t

m = P(x ,X ∣e ),1:t
x1:t−1
max 1:t−1 t 1:t

m (i)1:t i

m ∝ P(e ∣X ) P(X ∣x )m .1:t+1 t+1 t+1
xt

max t+1 t 1:t

t
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Example
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Hidden Markov models
So far, we described Markov processes over arbitrary sets of state variables 
and evidence variables .

A hidden Markov model (HMM) is a Markov process in which the state 
and the evidence  are both single discrete random variables.

, with domain 

, with domain 

This restricted structure allows for a reformulation of the forward-backward
algorithm in terms of matrix-vector operations.

Xt

Et

Xt

Et

X = Xt t D = {1, ...,S}Xt

E = Et t D = {1, ...,R}Et
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Note on terminology

Some authors instead divide Markov models into two classes, depending on the
observability of the system state:

Observable system state: Markov chains

Partially-observable system state: Hidden Markov models.

We follow here instead the terminology of the textbook, as de�ned in the
previous slide.
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Simpli�ed matrix algorithms

The prior  becomes a (normalized) column vector .

The transition model  becomes an  transition matrix ,
such that

The sensor model  is de�ned as an  sensor matrix , such
that

P(X )0 f ∈ R0 +
S

P(X ∣X )t t−1 S × S T

T = P (X = j∣X = i).ij t t−1

P(E ∣X )t t S × R B

B = P (E = j∣X = i).ij t t
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Let the observation matrix  be a diagonal matrix whose elements
corresponds to the column  of the sensor matrix .

If we use column vectors to represent forward and backward messages,
then we have

where  is an all-one vector of size .

Therefore the forward-backward algorithm needs time  and space 
.

Ot

et B

f = αO T f1:t+1 t+1
T
1:t

b = TO b ,k+1:t k+1 k+2:t

bt+1:t S

O(S t)2

O(St)
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Example

Suppose that  is the umbrella sequence.

See code/lecture6-forward-backward.ipynb for the execution.

[true, true, false, true, true]

f0

T

B

O = O = O = O1 2 4 5

O3

= (
0.5
0.5)

= (
0.7
0.3

0.3
0.7)

= (
0.9
0.2

0.1
0.8

)

= (
0.9
0.0

0.0
0.2)

= (
0.1
0.0

0.0
0.8)
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Stationary distribution

The stationary distribution  of a HMM is a distribution such that

Therefore, the stationary distribution corresponds to a (normalized) eigenvector
of the transposed transition matrix with an eigenvalue of .

f

f = T f .T

1
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Filters
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Suppose we want to track the position and velocity of a robot from noisy
observations collected over time.

Formally, we want to estimate continuous state variables such as

the position  of the robot at time ,

the velocity  of the robot at time .

We assume discrete time steps.

Xt t

Ẋt t

―
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Continuous variables
Let  be a random variable.

When  is uncountably in�nite (e.g., ),  is called a continuous
random variable.

If  is absolutely continuous, its probability distribution is described by a
density function  that assigns a probability to any interval 
such that

where  is non-negative piecewise continuous and such that

X : Ω → DX

DX D = RX X

X

p [a, b] ⊆ DX

P (a < X ≤ b) = p(x)dx,∫
a

b

p

p(x)dx = 1.∫
DX
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Uniform

The uniform distribution  is described by the density function

where  and  are the bounds of its support.

U(a, b)

p(x) = { b−a
1

0
if x ∈ [a, b]
otherwise

a ∈ R b ∈ R
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Normal

The normal (or Gaussian) distribution  is described by the density
function

where  and  are its mean and standard deviation parameters.

N (μ, σ)

p(x) = exp −
2πσ2
1

(
2σ2

(x− μ)2
)

μ ∈ R σ ∈ R+
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Multivariate normal

The multivariate normal distribution generalizes to  random variables. Its
(joint) density function is de�ned as

where  and  is positive semi-de�nite.

n

p(x = x , ..., x ) = exp − (x −m) Σ (x −m)1 n
(2π) ∣Σ∣n

1
(

2
1 T −1 )

m ∈ Rn Σ ∈ Rn×n
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Cheat sheet for Gaussian models (Särkkä, 2013)

If  and  have the joint Gaussian distribution

then the marginal and conditional distributions of  and  are given by

x y

p = N , ,(
x
y) ((

x
y)

∣
∣
∣
∣
(
a
b) (

A
CT

C
B))

x y

p(x)
p(y)

p(x∣y)

p(y∣x)

= N (x∣a,A)
= N (y∣b,B)

= N (x∣a+CB (y − b),A−CB C )−1 −1 T

= N (y∣b+C A (x − a),B −C A C).T −1 T −1
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If the random variables  and  have Gaussian probability distributions

then the joint distribution of  and  is Gaussian with

x y

p(x)
p(y∣x)

= N (x∣m,P)
= N (y∣Hx + u,R),

x y

p = N , .(
x
y) ((

x
y)

∣
∣
∣
∣
(

m
Hm+ u) (

P
HP

PHT

HPH +RT ))
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Continuous Bayes �lter
The Bayes �lter extends to continuous state and evidence variables  and .

The summations are replaced with integrals and the probability mass functions
with probability densities, giving the recursive Bayesian relation

where the normalization constant is

Xt Et

p(x ∣e )t+1 1:t+1 ∝ p(e ∣x ) p(x ∣x )p(x ∣e )dx ,t+1 t+1 ∫ t+1 t t 1:t t

Z = p(e ∣x )p(x ∣e )dx .∫ t+1 t+1 t+1 1:t t+1
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Transition model

Sensor model

Kalman �lter
The Kalman �lter is a special case of the Bayes �lter, which assumes:

Gaussian prior

Linear Gaussian transition model

Linear Gaussian sensor model

p(x ∣x ) = N (x ∣Ax + b,Σ )t+1 t t+1 t x

p(e ∣x ) = N (e ∣Cx + d,Σ )t t t t e
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Filtering Gaussian distributions

Prediction step:

If the distribution  is Gaussian and the transition model 
 is linear Gaussian, then the one-step predicted distribution

given by

is also a Gaussian distribution.

Update step:

If the prediction  is Gaussian and the sensor model 
 is linear Gaussian, then after conditioning on new evidence,

the updated distribution

is also a Gaussian distribution.

p(x ∣e )t 1:t

p(x ∣x )t+1 t

p(x ∣e ) = p(x ∣x )p(x ∣e )dxt+1 1:t ∫ t+1 t t 1:t t

p(x ∣e )t+1 1:t

p(e ∣x )t+1 t+1

p(x ∣e ) ∝ p(e ∣x )p(x ∣e )t+1 1:t+1 t+1 t+1 t+1 1:t
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Therefore, for the Kalman �lter,  is a multivariate Gaussian distribution
 for all .

Filtering reduces to the computation of the parameters  and .

By contrast, for general (non-linear, non-Gaussian) processes, the
description of the posterior grows unboundedly as .

p(x ∣e )t 1:t

N (x ∣μ ,Σ )t t t t

μt Σt

t→∞
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1D example

Gaussian random walk:

Gaussian prior:

The transition model adds random perturbations of constant variance:

The sensor model yields measurements with Gaussian noise of constant
variance:

p(x ) = N (x ∣μ , σ )0 0 0 0
2

p(x ∣x ) = N (x ∣x , σ )t+1 t t+1 t x
2

p(e ∣x ) = N (e ∣x , σ )t t t t e
2
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The one-step predicted distribution is given by

Note that the same result can be obtained by using instead the Gaussian
models identities.

p(x )1 = p(x ∣x )p(x )dx∫ 1 0 0 0

∝ exp − exp − dx∫ (
2
1

σx
2

(x − x )1 0
2

) (
2
1

σ0
2

(x − μ )0 0
2

) 0

∝ exp − dx∫ (
2
1

σ σ0
2

x
2

σ (x − x ) + σ (x − μ )0
2

1 0
2

x
2

0 0
2

) 0

... (simplify by completing the square)

∝ exp −(
2
1

σ + σ0
2

x
2

(x − μ )1 0
2

)

= N (x ∣μ , σ + σ )1 0 0
2

x
2
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For the update step, we need to condition on the observation at the �rst time
step:

p(x ∣e )1 1 ∝ p(e ∣x )p(x )1 1 1

∝ exp − exp −(
2
1

σe
2

(e − x )1 1
2

) (
2
1

σ + σ0
2

x
2

(x − μ )1 0
2

)

∝ exp −
⎝
⎜
⎛

2
1

σ +σ +σ0
2

x
2

e
2

(σ +σ )σ0
2

x
2

e
2

x −( 1 σ +σ +σ0
2

x
2

e
2

(σ +σ )e +σ μ0
2

x
2

1 e
2
0 )
2

⎠
⎟
⎞

= N x ,( 1
∣
∣
∣
∣

σ + σ + σ0
2

x
2

e
2

(σ + σ )e + σ μ0
2

x
2

1 e
2
0

σ + σ + σ0
2

x
2

e
2

(σ + σ )σ0
2

x
2

e
2

)
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In summary, the update equations given a new evidence  are:et+1

μt+1

σt+1
2

=
σ + σ + σt
2

x
2

e
2

(σ + σ )e + σ μt
2

x
2

t+1 e
2

t

=
σ + σ + σt
2

x
2

e
2

(σ + σ )σt
2

x
2

e
2
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General Kalman update

The same derivations generalize to multivariate normal distributions.

Assuming the transition and sensor models

we arrive at the following general update equations:

where  is the Kalman gain matrix.

p(x ∣x )t+1 t

p(e ∣x )t t

= N (x ∣Fx ,Σ )t+1 t x

= N (e ∣Hx ,Σ ),t t e

μt+1

Σt+1

Kt+1

= Fμ +K (e −HFμ )t t+1 t+1 t

= (I−K H)(FΣ F +Σ )t+1 t
T

x

= (FΣ F +Σ )H (H(FΣ F +Σ )H +Σ )t
T

x
T

t
T

x
T

e
−1

Kt+1

58 / 70



Apollo guidance computer

The Apollo Guidance Computer used a Kalman �lter to estimate the position of
the spacecraft. The Kalman �lter was used to merge new data with past
position measurements to produce an optimal position estimate of the
spacecraft.

―
Credits: Apollo-11 source code 59 / 70

https://github.com/chrislgarry/Apollo-11/blob/4f3a1d4374d4708737683bed78a501a321b6042c/Comanche055/MEASUREMENT_INCORPORATION.agc#L208


Demo: tracking an object in space using the Kalman Filter.
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https://demonstrations.wolfram.com/TrackingAnObjectInSpaceUsingTheKalmanFilter/


Data assimilation for weather forecasts

In weather forecasting, �ltering is used to combine observations of the
atmosphere with numerical models to estimate its current state. This is called
data assimilation.

Then, the model is used to predict the future states of the atmosphere.

61 / 70



20 YEARS OF 4DVAR20 YEARS OF 4DVAR
Watch laterWatch later ShareShare
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https://www.youtube.com/watch?v=9c4kXW7btBE


Dynamic Bayesian networks

Dynamics Bayesian networks (DBNs) can be used for tracking multiple variables
over time, using multiple sources of evidence. Idea:

Repeat a �xed Bayes net structure at each time .

Variables from time  condition on those from .

DBNs are a generalization of HMMs and of the Kalman �lter.

t

t t − 1

―
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Application: ICU monitoring
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Exact inference

Unroll the network through time and run any exact inference algorithm (e.g.,
variable elimination)

Problem: inference cost for each update grows with .

Rollup �ltering: add slice , sum out slice  using variable elimination.

Largest factor is  and the total update cost per step is .

Better than HMMs, which is , but still infeasible for large numbers of variables.

t

t + 1 t

O(d )n+k O(nd )n+k

O(d )2n
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Particle �lter
Basic idea:

Maintain a �nite population of samples, called particles.

The representation of our beliefs is a list of  particles.

Ensure the particles track the high-likelihood regions of the state space.

Throw away samples that have very low weight, according to the evidence.

Replicate those that have high weight.

This scales to high dimensions!

N

―
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Update cycle

―
Image credits: CS188, UC Berkeley. 67 / 70
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Robot localization

(See demo)
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Summary
Temporal models use state and sensor variables replicated over time.

Their purpose is to maintain a belief state as time passes and as more evidence is collected.

The Markov and stationarity assumptions imply that we only need to
specify

a transition model ,

a sensor model .

Inference tasks include �ltering, prediction, smoothing and �nding the most
likely sequence.

Filter algorithms are all based on the core of idea of

projecting the current belief state through the transition model,

updating the prediction according to the new evidence.

P(X ∣X )t+1 t

P(E ∣X )t t
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The end.
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