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Representing uncertain knowledge
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The explicit representation of the joint probability distribution grows
exponentially with the number of variables.

Independence and conditional independence assumptions reduce the number
of probabilities that need to be speci�ed. They can be represented explicitly in
the form of a Bayesian network.
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A Bayesian network is a directed acyclic graph where

each node corresponds to a random variable;
observed or unobserved

discrete or continuous

each edge is directed and indicates a direct
probabilistic dependency between two variables;

each node  is annotated with a conditional
probability distribution

that de�nes the distribution of  given its parents in
the network.

Bayesian networks

Xi

P(X ∣parents(X ))i i

Xi
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Example 1

Variables: , , , , .

The network topology can be de�ned from domain knowledge:

A burglar can set the alarm off

An earthquake can set the alaram off

The alarm can cause Mary to call

The alarm can cause John to call

Burglar Earthquake Alarm JohnCalls MaryCalls
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Semantics
A Bayesian network implicitly encodes the full joint distribution as a product of
local distributions, that is

Proof:

By the chain rule, .

Provided that we assume conditional independence of  with its
predecessors in the ordering given the parents, and provided 

, we have

Therefore, .

P (x , ..., x ) = P (x ∣parents(X )).1 n

i=1

∏
n

i i

P (x , ..., x ) = P (x ∣x , ..., x )1 n ∏i=1
n

i 1 i−1

Xi

parents(X ) ⊆ {X , ...,X }i 1 i−1

P (x ∣x , ..., x ) = P (x ∣parents(X )).i 1 i−1 i i

P (x , ..., x ) = P (x ∣parents(X ))1 n ∏i=1
n

i i
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Example 1 (continued)

P (j,m, a, ¬b, ¬e) = P (j∣a)P (m∣a)P (a∣¬b, ¬e)P (¬b)P (¬e)

= 0.9 × 0.7 × 0.001 × 0.999 × 0.998

≈ 0.00063
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Example 2

The dentist's scenario can be modeled as a Bayesian network with four
variables, as shown on the right.

By construction, the topology of the network encodes conditional independence
assertions. Each variable is independent of its non-descendants given its
parents:

 is independent of the other variables.

 and  are conditionally independent given .

Weather

Toothache Catch Cavity
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Example 3

Edges may correspond to causal relations.

P(R)

R P

r 0.25

¬r 0.75

P(T ∣R)

R T P

r t 0.75

r ¬t 0.25

¬r t 0.5

¬r ¬t 0.5
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Example 3 (bis)

... but edges need not be causal!

P(T )

T P

t 9/16

¬t 7/16

P(R∣T )

T R P

t r 1/3

t ¬r 2/3

¬t r 1/7

¬t ¬r 6/7
―
Image credits: CS188, UC Berkeley. 12 / 56

https://inst.eecs.berkeley.edu/~cs188/


Construction
Bayesian networks can be constructed in any order, provided that the
conditional independence assertions are respected.

Algorithm

1. Choose some ordering of the variables .

2. For  to :

1. Add  to the network.

2. Select a minimal set of parents from  such that 
.

3. For each parent, insert a link from the parent to .

4. Write down the CPT.

X , ...,X1 n

i = 1 n

Xi

X , ...,X1 i−1

P (x ∣x , ..., x ) = P (x ∣parents(X ))i 1 i−1 i i

Xi
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Do these networks represent the same distribution? Are they as compact?
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Independence relations
Since the topology of a Bayesian network encodes conditional independence
assertions, it can be used to answer questions about the independence of
variables given some evidence.

Example: Are  and  necessarily independent?X Z
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Is  independent of ? No.

Counter-example:

Low pressure causes rain causes
tra�c, high pressure causes no
rain causes no tra�c.

In numbers:

,

,

,

: low pressure, : rain, : tra�c.

Cascades

X Z

P (y∣x) = 1

P (z∣y) = 1

P (¬y∣¬x) = 1

P (¬z∣¬y) = 1

X Y Z

P (x, y, z) = P (x)P (y∣x)P (z∣y)

―
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Is  independent of , given ? Yes.

We say that the evidence along the
cascade blocks the in�uence.

: low pressure, : rain, : tra�c.

X Z Y

P (z∣x, y) =
P (x, y)

P (x, y, z)

=
P (x)P (y∣x)

P (x)P (y∣x)P (z∣y)

= P (z∣y)
X Y Z

P (x, y, z) = P (x)P (y∣x)P (z∣y)

―
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Common parent

Is  independent of ? No.

Counter-example:

Project due causes both forums
busy and lab full.

In numbers:

,

,

,

: forum busy, : project due, : lab
full.

X Z

P (x∣y) = 1

P (¬x∣¬y) = 1

P (z∣y) = 1

P (¬z∣¬y) = 1
X Y Z

P (x, y, z) = P (y)P (x∣y)P (z∣y)
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Is  independent of , given ? Yes

Observing the parent blocks the
in�uence between the children.

: forum busy, : project due, : lab
full.

X Z Y

P (z∣x, y) =
P (x, y)

P (x, y, z)

=
P (y)P (x∣y)

P (y)P (x∣y)P (z∣y)

= P (z∣y)

X Y Z

P (x, y, z) = P (y)P (x∣y)P (z∣y)

―
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v-structures

Are  and  independent? Yes.

The ballgame and the rain cause
tra�c, but they are not
correlated.

(Prove it!)

Are  and  independent given ?
No!

Seeing tra�c puts the rain and
the ballgame in competition as
explanation.

This is backwards from the
previous cases. Observing a child
node activates in�uence between
parents.

: rain, : ballgame, : tra�c.

X Y

X Y Z

X Y Z

P (x, y, z) = P (x)P (y)P (z∣x, y)

―
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d-separation

Let us assume a complete Bayesian network. Are  and  conditionally
independent given evidence ?

Consider all (undirected) paths from  to :

If one or more active path, then independence is not guaranteed.

Otherwise (i.e., all paths are inactive), then independence is guaranteed.

Xi Xj

Z = z , ...,Z = z1 1 m m

Xi Xj
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A path is active if each triple along the path is
active:

Cascade  where  is
unobserved (either direction).

Common parent  where  is
unobserved.

v-structure  where  or one of
its descendents is observed.

A→ B → C B

A← B → C B

A→ B ← C B

―
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Example

?

?

?

?

?

L ⊥ T ∣T′

L ⊥ B

L ⊥ B∣T

L ⊥ B∣T ′

L ⊥ B∣T ,R
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Inference
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Simple queries:

Conjunctive queries:

Most likely explanation:

Optimal decisions:

Inference is concerned with the problem computing a marginal and/or a
conditional probability distribution from a joint probability distribution:

P(X ∣e)i

P(X ,X ∣e) = P(X ∣e)P(X ∣X , e)i j i j i

argmax P (q∣e)q

argmax E V (s )a p(s ∣s,a)′ [ ′ ]

―
Image credits: CS188, UC Berkeley. 25 / 56

https://inst.eecs.berkeley.edu/~cs188/


Inference by enumeration
Start from the joint distribution .

1. Select the entries consistent with the evidence .

2. Marginalize out the hidden variables to obtain the joint of the query and the
evidence variables:

3. Normalize: 

P(Q,E , ...,E ,H , ...,H )1 k 1 r

E , ...,E = e , ..., e1 k 1 k

P(Q, e , ..., e ) = P(Q, h , ..., h , e , ..., e ).1 k

h ,...,h1 r

∑ 1 r 1 k

Z

P(Q∣e , ..., e )1 k

= P (q, e , ..., e )
q

∑ 1 k

= P(Q, e , ..., e )
Z

1
1 k
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Consider the alarm network and the query . We have

Using the Bayesian network, the full joint entries can be rewritten as the product
of CPT entries

P(B∣j,m)

P(B∣j,m) = P(B, j,m, e, a)
Z

1

e

∑
a

∑

∝ P(B, j,m, e, a).
e

∑
a

∑

P(B∣j,m) ∝ P(B)P (e)P(a∣B, e)P (j∣a)P (m∣a).
e

∑
a

∑
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Inference by enumeration is slow because the whole joint distribution is joined
up before summing out the hidden variables.
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Factors that do not depend on the variables in the summations can be factored
out, which means that marginalization does not necessarily have to be done at
the end, hence saving some computations.

For the alarm network, we have

P(B∣j,m) ∝ P(B)P (e)P(a∣B, e)P (j∣a)P (m∣a)
e

∑
a

∑

= P(B) P (e) P(a∣B, e)P (j∣a)P (m∣a).
e

∑
a

∑
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Same complexity as DFS:  in space,  in time.O(n) O(d )n
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Evaluation tree for 

Despite the factoring, inference by enumeration is still ine�cient. There are
repeated computations!

e.g.,  is computed twice, once for  and once for .

These can be avoided by storing intermediate results.

P (b∣j,m)

P (j∣a)P (m∣a) e ¬e
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Inference by variable elimination
The Variable Elimination algorithm carries out summations right-to-left and
stores intermediate factors to avoid recomputations. The algorithm interleaves:

Joining sub-tables

Eliminating hidden variables

―
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Variable Elimination

Query: .

1. Start with the initial factors (the local CPTs, instantiated by the evidence).

2. While there are still hidden variables:

1. Pick a hidden variable 

2. Join all factors mentioning 

3. Eliminate H

3. Join all remaining factors

4. Normalize

P(Q∣e , ..., e )1 k

H

H
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Factors

Each factor  is a multi-dimensional array indexed by the values of its
argument variables. E.g.:

Factors are initialized with the CPTs annotating the nodes of the Bayesian
network, conditioned on the evidence.

f i

f4

f (a)4

f (¬a)4

= f (A) = =4 (
P (j∣a)
P (j∣¬a)) (

0.90
0.05)

= 0.90

= 0.5
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Join

The pointwise product , or join, of two factors  and  yields a new factor 
.

Exactly like a database join!

The variables of  are the union of the variables in  and .

The elements of  are given by the product of the corresponding elements
in  and .

× f1 f2
f3

f3 f1 f2

f3
f1 f2
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Elimination

Summing out, or eliminating, a variable from a factor is done by adding up the
sub-arrays formed by �xing the variable to each of its values in turn.

For example, to sum out  from , we write:A f (A,B,C)3

f(B,C) = f (a,B,C) = f (a,B,C) + f (¬a,B,C)
a

∑ 3 3 3

= + =(
0.06
0.42

0.24
0.28) (

0.18
0.06

0.72
0.04) (

0.24
0.48

0.96
0.32)
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Run the variable elimination algorithm for the query .P(B∣j,m)
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Relevance

Consider the query :

, therefore  is irrelevant for the query.

In other words,  remains unchanged if we remove  from the
network.

Theorem.  is irrelevant for  unless .

P(J∣b)

P(J∣b) ∝ P (b) P (e) P (a∣b, e)P(J∣a) P (m∣a)
e

∑
a

∑
m

∑

P (m∣a) = 1∑m M

P(J∣b) M

H P(Q∣e) H ∈ ancestors({Q} ∪ E)
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Complexity

Consider the query .

Work through the two elimination orderings:

What is the size of the maximum factor generated for each of the orderings?

Answer:  vs.  (assuming boolean values)

P(X ∣y , ..., y )n 1 n

Z,X , ...,X1 n−1

X , ...,X ,Z1 n−1

2n+1 22
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The computational and space complexity of variable elimination is determined
by the largest factor.

The elimination ordering can greatly affect the size of the largest factor.

The optimal ordering is NP-hard to �nd. There is no known polynomial-time
algorithm to �nd it.
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Approximate inference
Exact inference is intractable for most probabilistic models of practical interest.
(e.g., involving many variables, continuous and discrete, undirected cycles, etc).

We must resort to approximate inference algorithms:

Sampling methods: produce answers by repeatedly generating random
numbers from a distribution of interest.

Variational methods: formulate inference as an optimization problem.

Belief propagation methods: formulate inference as a message-passing
algorithm.

Machine learning methods: learn an approximation of the target distribution
from training examples.
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Parameter learning
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When modeling a domain, we can choose a probabilistic model speci�ed as a
Bayesian network. However, specifying the individual probability values is often
di�cult.

A workaround is to use a parameterized family  (sometimes also noted 
) of models, and estimate the parameters  from data.

P(X ∣θ)
P (X)θ θ
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Maximum likelihood estimation
Suppose we have a set of  i.i.d. observations .

The likelihood of the parameters  is the probability of the data given the
parameters

The maximum likelihood estimate (MLE)  of the parameters is the value of 
that maximizes the likelihood

N d = {x , ..., x }1 N

θ

P (d∣θ) = P (x ∣θ).
j=1

∏
N

j

θ∗ θ

θ = arg P (d∣θ).∗

θ
max
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In practice,

1. Write down the log-likelihood  of the parameters .

2. Write down the derivative  of the log-likelihood of the parameters .

3. Find the parameter values  such that the derivatives are zero (and check
whether the Hessian is negative de�nite).

L(θ) = logP (d∣θ) θ

∂θ
∂L θ

θ∗
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Case (a)

What is the fraction  of cherry candies?

Suppose we unwrap  candies, and get  cherries and  limes. These
are i.i.d. observations, therefore

Maximize this w.r.t. , which is easier for the log-likelihood and leads to

Hence .

θ

N c l = N − c

P (d∣θ) = P (x ∣θ) = θ (1 − θ) .
j=1

∏
N

j
c l

θ

L(d∣θ)

∂θ
∂L(d∣θ)

= logP (d∣θ) = c log θ + l log(1 − θ)

= − = 0.
θ

c

1 − θ

l

θ =
N
c
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Case (b)

Red and green wrappers depend probabilistically on �avor. E.g., the likelihood
for a cherry candy in green wrapper is

The likelihood for the parameters, given  candies,  red-wrapped cherries, 
green-wrapped cherries, etc., is

P (cherry, green∣θ, θ , θ )1 2

= P (cherry∣θ, θ , θ )P (green∣cherry, θ, θ , θ )1 2 1 2

= θ(1 − θ ).1

N rc gc

P (d∣θ, θ , θ ) =1 2

L =

θ (1 − θ) θ (1 − θ ) θ (1 − θ )c l
1
rc

1
gc

2
rl

2
gl

c log θ + l log(1 − θ)+

r log θ + g log(1 − θ )+c 1 c 1

r log θ + g log(1 − θ ).l 2 l 2
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The derivatives of  yieldL

∂θ
∂L

∂θ1

∂L

∂θ2

∂L

= − = 0 ⇒ θ =
θ

c

1 − θ

l

c+ l

c

= − = 0 ⇒ θ =
θ1

rc

1 − θ1

gc
1

r + gc c

rc

= − = 0 ⇒ θ = .
θ2

rl

1 − θ2

gl
2

r + gl l

rl
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In case (a), if we unwrap 1 candy and get 1 cherry, what is the MLE? How
con�dent are we in this estimate?

With small datasets, maximum likelihood estimation can lead to over�tting.

The MLE does not provide a measure of uncertainty about the parameters.
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Bayesian parameter learning
We can treat parameter learning as a Bayesian inference problem:

Make the parameters  random variables and treat them as hidden
variables.

Specify a prior distribution  over the parameters.

Then, as data arrives, update our beliefs about the parameters to obtain the
posterior distribution .

How should Figure 20.2 (a) be updated?

θ

P(θ)

P(θ∣d)
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Case (a)

What is the fraction  of cherry candies?

We assume a Beta prior

where  is a normalization constant.

Then, observing a cherry candy yields the posterior

θ

P (θ) = Beta(θ∣a, b) = θ (1 − θ)
Z

1 a−1 b−1

Z

P (θ∣cherry) ∝ P (cherry∣θ)P (θ)

= θBeta(θ∣a, b)

= θ(1 − θ) θ (1 − θ)b−1 a−1 b−1

= θ (1 − θ)a b−1

= Beta(θ∣a + 1, b).
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Case (b)
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Maximum a posteriori estimation

When the posterior cannot be computed analytically, we can use maximum a
posteriori (MAP) estimation, which consists in approximating the posterior with
the point estimate  that maximizes the posterior distribution, i.e.,θ∗

θ = arg P (θ∣d) = arg P (d∣θ)P (θ).∗

θ
max

θ
max
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(demo)
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Summary
A Bayesian Network speci�es a full joint distribution. BNs are often
exponentially smaller than an explicitly enumerated joint distribution.

The topology of a Bayesian network encodes conditional independence
assumptions between random variables.

Inference is the problem of computing a marginal and/or a conditional
probability distribution from a joint probability distribution.

Exact inference is possible for simple Bayesian networks, but is intractable for most
probabilistic models of practical interest.

Approximate inference algorithms are used in practice.

Parameters of a Bayesian network can be learned from data using
maximum likelihood estimation or Bayesian inference.
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The end.
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