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Random variables

Probability distributions

Inference

Independence

The Bayes' rule

Today

Do not overlook this lecture!
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Quantifying uncertainty
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A ghost is hidden in the grid
somewhere.

Sensor readings tell how close a
square is to the ghost:

On the ghost: red

1 or 2 away: orange

3 away: yellow

4+ away green

Sensors are noisy, but we know the probability values , for all
colors and all distances.

P (color∣distance)
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Principle of maximum expected utility

An agent is rational if it chooses the action that yields the highest expected
utility, averaged over all the possible outcomes of the action.

What does "expected" mean exactly?
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Uncertainty
General setup:

Observed variables or evidence: agent knows certain things about the state
of the world (e.g., sensor readings).

Unobserved variables: agent needs to reason about other aspects that are
uncertain (e.g., where the ghost is).

(Probabilistic) model: agent knows or believes something about how the
observed variables relate to the unobserved variables.

Probabilistic reasoning provides a framework for managing our knowledge and
beliefs.
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Probabilistic assertions
Probabilistic assertions express the agent's inability to reach a de�nite decision
regarding the truth of a proposition.

Probability values summarize effects of

ignorance (theoretical, practical)

laziness (lack of time, resources)

Probabilities relate propositions to one's own state of knowledge (or lack
thereof).

e.g., P (ghost in cell [3, 2]) = 0.02
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Frequentism vs. Bayesianism

What do probability values represent?

The objectivist frequentist view is that probabilities are real aspects of the
universe.

i.e., propensities of objects to behave in certain ways.

e.g., the fact that a fair coin comes up heads with probability  is a propensity of the coin
itself.

The subjectivist Bayesian view is that probabilities are a way of
characterizing an agent's beliefs or uncertainty.

i.e., probabilities do not have external physical signi�cance.

This is the interpretation of probabilities that we will use!

How shall we assign numerical values to beliefs?

0.5
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Kolmogorov's axioms
Begin with a set , the sample space.

 is a sample point or possible world.

A probability space is a sample space equipped with a probability function, i.e.
an assignment  such that:

1st axiom: ,  for all 

2nd axiom: 

3rd axiom:  for any set of samples

where  the power set of .

Ω

ω ∈ Ω

P : P(Ω) → R

P (ω) ∈ R 0 ≤ P (ω) ω ∈ Ω

P (Ω) = 1

P ({ω , ...,ω }) = P (ω )1 n ∑i=1
n

i

P(Ω) Ω
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Example

 = the 6 possible rolls of a die.

 (for ) are the sample points, each corresponding to an
outcome of the die.

Assignment  for a fair die:

Ω

ωi i = 1, ..., 6

P

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) =
6
1
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Random variables
A random variable is a function  from the sample space to
some domain de�ning its outcomes.

e.g.,  such that .

 induces a probability distribution for any random variable .

e.g., .

An event  is a set of outcomes  of the variables 
, such that

X : Ω → DX

Odd : Ω → {true, false} Odd(ω) = (ωmod2 = 1)

P X

P (X = x ) = P (ω)i ∑{ω:X(ω)=x }i

P (Odd = true) = P (1) + P (3) + P (5) = 2
1

E {(x , ..., x ), ...}1 n

X , ...,X1 n

P (E) = P (X = x , ...,X = x ).
(x ,...,x )∈E1 n

∑ 1 1 n n
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Notations

Random variables are written in upper roman letters: , , etc.

Realizations of a random variable are written in corresponding lower case
letters. E.g., , , ...,  could be of outcomes of the random variable .

The probability value of the realization  is written as .

When clear from context, this will be abbreviated as .

The probability distribution of the (discrete) random variable  is denoted
as . This corresponds e.g. to a vector of numbers, one for each of the
probability values  (and not to a single scalar value!).

X Y

x1 x2 xn X

x P (X = x)

P (x)

X

P(X)
P (X = x )i
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Probability distributions
For discrete variables, the probability distribution can be encoded by a discrete
list of the probabilities of the outcomes, known as the probability mass
function.

One can think of the probability distribution as a table that associates a
probability value to each outcome of the variable.

P(W )

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0
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Joint distributions

A joint probability distribution over a set of random variables 
speci�es the probability of each (combined) outcome:

X , ...,X1 n

P (X = x , ...,X = x ) = P (ω)1 1 n n

{ω:X (ω)=x ,...,X (ω)=x }1 1 n n

∑

P(T ,W )

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Marginal distributions

The marginal distribution of a subset of a collection of random variables is the
joint probability distribution of the variables contained in the subset.

Intuitively, marginal distributions are sub-tables which eliminate variables.

P(T ,W )

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(T )

T P

hot 0.5

cold 0.5

P (t) = P (t,w)∑w

P(W )

W P

sun 0.6

rain 0.4

P (w) = P (t,w)∑t
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Conditional distributions

The conditional probability of a realization  given the realization  is de�ned as
the ratio of the probability of the joint realization  and , and the probability of :

Indeed, observing  rules out all those possible worlds where ,
leaving a set whose total probability is just . Within that set, the worlds for
which  satisfy  and constitute a fraction .

a b

a b b

P (a∣b) = .
P (b)

P (a, b)

B = b B ≠ b

P (b)
A = a A = a ∧B = b P (a, b)/P (b)
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Conditional distributions are probability distributions over some variables, given
�xed values for others.

P(T ,W )

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(W ∣T = hot)

W P

sun 0.8

rain 0.2

P(W ∣T = cold)

W P

sun 0.4

rain 0.6
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Probabilistic inference
Probabilistic inference is the problem of computing a desired probability from
other known probabilities (e.g., conditional from joint).

We generally compute conditional probabilities.

e.g., 

These represent the agent's beliefs given the evidence.

Probabilities change with new evidence:

e.g., 

e.g., 

e.g., 

Observing new evidence causes beliefs to be updated.

P (on time∣no reported accidents) = 0.9

P (on time∣no reported accidents, 5AM) = 0.95

P (on time∣no reported accidents, rain) = 0.8

P (ghost in [3, 2]∣red in [3, 2]) = 0.99
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General case

Evidence variables: 

Query variables: 

Hidden variables: 

 = all variables 

Inference is the problem of computing .

E , ...,E = e , ..., e1 k 1 k

Q

H , ...,H1 r

(Q ∪ E , ...,E ∪H , ...,H )1 k 1 r X , ...,X1 n

P(Q∣e , ..., e )1 k
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Inference by enumeration
Start from the joint distribution .

1. Select the entries consistent with the evidence .

2. Marginalize out the hidden variables to obtain the joint of the query and the
evidence variables:

3. Normalize: 

P(Q,E , ...,E ,H , ...,H )1 k 1 r

E , ...,E = e , ..., e1 k 1 k

P(Q, e , ..., e ) = P(Q, h , ..., h , e , ..., e ).1 k

h ,...,h1 r

∑ 1 r 1 k

Z

P(Q∣e , ..., e )1 k

= P (q, e , ..., e )
q

∑ 1 k

= P(Q, e , ..., e )
Z

1
1 k
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Example

P(W )

P(W ∣winter)

P(W ∣winter, hot)

S T W P

summer hot sun 0.3

summer hot rain 0.05

summer cold sun 0.1

summer cold rain 0.05

winter hot sun 0.1

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.2
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Complexity

Inference by enumeration can be used to answer probabilistic queries for
discrete variables (i.e., with a �nite number of values).

However, enumeration does not scale!

Assume a domain described by  variables taking at most  values.

Space complexity: 

Time complexity: 

Can we reduce the size of the representation of the joint distribution?

n d

O(d )n

O(d )n
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Product rule

Example

P (a, b) = P (b)P (a∣b)

P(W )

W P

sun 0.8

rain 0.2

P(D∣W )

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

P(D,W )

D W P

wet sun

dry sun

wet rain

dry rain
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Chain rule
More generally, any joint distribution can always be written as an incremental
product of conditional distributions:

P (x , x , x )1 2 3

P (x , ..., x )1 n

= P (x )P (x ∣x )P (x ∣x , x )1 2 1 3 1 2

= P (x ∣x , ..., x )
i=1

∏
n

i 1 i−1
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Independence
 and  are independent iff, for all  and ,

, or

, or

Independence is denoted as .

A B a ∈ DA b ∈ DB

P (a∣b) = P (a)

P (b∣a) = P (b)

P (a, b) = P (a)P (b)

A ⊥ B
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Example 1

 

The original 32-entry table reduces to one 8-entry and one 4-entry table
(assuming 4 values for  and boolean values otherwise).

P (toothache, catch, cavity, weather)

= P (toothache, catch, cavity)P (weather)

Weather

―
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Example 2

For  independent coin �ips, the joint distribution can be fully factored and
represented as the product of  1-entry tables.

n

n

2 → nn
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Conditional independence
 and  are conditionally independent given  iff, for all ,  and 

,

, or

, or

Conditional independence is denoted as .

A B C a ∈ DA b ∈ DB

c ∈ DC

P (a∣b, c) = P (a∣c)

P (b∣a, c) = P (b∣c)

P (a, b∣c) = P (a∣c)P (b∣c)

A ⊥ B∣C
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Using the chain rule, the join distribution can be factored as a product of
conditional distributions.

Each conditional distribution may potentially be simpli�ed by conditional
independence.

Conditional independence assertions allow probabilistic models to scale
up.
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Example 1

Assume three random variables ,  and .

 is conditionally independent of , given . Therefore, we
can write:

In this case, the representation of the joint distribution reduces to 
independent numbers (instead of ).

Toothache Catch Cavity

Catch Toothache Cavity

P (toothache, catch, cavity)

= P (toothache∣catch, cavity)P (catch∣cavity)P (cavity)

= P (toothache∣cavity)P (catch∣cavity)P (cavity)

2 + 2 + 1
2 − 1n
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Example 2 (Naive Bayes)

More generally, from the product rule, we have

Assuming pairwise conditional independence between the effects given the
cause, it comes:

This probabilistic model is called a naive Bayes model.

The complexity of this model is  instead of  without the
conditional independence assumptions.

Naive Bayes can work surprisingly well in practice, even when the
assumptions are wrong.

P (cause, effect , ..., effect ) = P (effect , ..., effect ∣cause)P (cause)1 n 1 n

P (cause, effect , ..., effect ) = P (cause) P (effect ∣cause)1 n

i

∏ i

O(n) O(2 )n
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Study the next slide. Twice.
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The product rule de�nes two ways to factor the
joint distribution of two random variables.

Therefore,

The Bayes' rule

 is the prior belief on .

 is the probability of the evidence .

 is the posterior belief on , given the evidence .

 is the conditional probability of  given . Depending on the context,
this term is called the likelihood.

P (a, b) = P (a∣b)P (b) = P (b∣a)P (a)

P (a∣b) = .
P (b)

P (b∣a)P (a)

P (a) a

P (b) b

P (a∣b) a b

P (b∣a) b a
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The Bayes' rule is the foundation of many AI systems.

P (a∣b) =
P (b)

P (b∣a)P (a)
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Example 1: diagnostic probability from causal probability.

where

 quanti�es the relationship in the causal direction.

 describes the diagnostic direction.

Let =stiff neck and =meningitis. Given , , 
 it comes

P (cause∣effect) =
P (effect)

P (effect∣cause)P (cause)

P (effect∣cause)

P (cause∣effect)

S M P (s∣m) = 0.7 P (m) = 1/50000
P (s) = 0.01,

P (m∣s) = = = 0.0014.
P (s)

P (s∣m)P (m)
0.01

0.7 × 1/50000
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Example 2: Ghostbusters, revisited

Let us assume a random variable  for the ghost location and a set of
random variables  for the individual readings.

We start with a uniform prior distribution  over ghost locations.

We assume a sensor reading model .

That is, we know what the sensors do.

 = reading color measured at 

e.g., 

Two readings are conditionally independent, given the ghost position.

G

Ri,j

P(G)

P(R ∣G)i,j

Ri,j [i, j]

P (R = yellow∣G = [1, 1]) = 0.11,1
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We can calculate the posterior distribution  using Bayes' rule:

For the next reading , this posterior distribution becomes the prior
distribution over ghost locations, which we update similarly.

P(G∣R )i,j

P(G∣R ) = .i,j P(R )i,j

P(R ∣G)P(G)i,j

Ri ,j′ ′
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0:00 / 1:02
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Example 3: AI for Science

Given some observation  and prior beliefs , science is about updating
one's knowledge, which may be framed as computing

x p(θ)

p(θ∣x) = .
p(x)

p(x∣θ)p(θ)
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Exoplanet atmosphere characterization
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Summary
Uncertainty arises because of laziness and ignorance. It is inescapable in
complex non-deterministic or partially observable environments.

Probabilistic reasoning provides a framework for managing our knowledge
and beliefs, with the Bayes' rule acting as the workhorse for inference.
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The end.
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