
Introduction to Arti�cial Intelligence
Lecture 3: Games and Adversarial search

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 58

mailto:g.louppe@uliege.be

Nash Equilibrium| HD | With Subtitles|Nash Equilibrium| HD | With Subtitles|
Later bekijLater bekij…… DelenDelen

2 / 58

https://www.youtube.com/watch?v=N7KpcYKRm1M

Today
How to act rationally in a multi-agent environment?

How to anticipate and respond to the arbitrary behavior of other agents?

Adversarial search

Minimax

 pruning

H-Minimax

Expectiminimax

Monte Carlo Tree Search

Modeling assumptions

State-of-the-art agents.

α− β

3 / 58

Minimax

4 / 58

Games
A game is a multi-agent environment where agents may have either
con�icting or common interests.

Opponents may act arbitrarily, even if we assume a deterministic fully
observable environment.

The solution to a game is a strategy specifying a move for every possible opponent reply.

This is different from search where a solution is a �xed sequence.

Time is often limited.

5 / 58

Types of games

Deterministic or stochastic?

Perfect or imperfect information?

Two or more players?

6 / 58

Formal de�nition

A game is formally de�ned as a kind of search problem with the following
components:

A representation of the states of the agents and their environment.

The initial state of the game.

A function that de�nes which player has the
move in state .

A description of the legal actions (or moves) available to a state , denoted
.

A transition model that returns the state that results from
doing action in state .

A terminal test which determines whether the game is over.

s0

player(s) p ∈ {1, ...,N}
s

s

actions(s)

s = result(s, a)′

a s

7 / 58

A utility function (or payoff) that de�nes the �nal numeric
value for a game that ends in for a player .

E.g., , or if the outcome is win, loss or draw.

Together, the initial state, the function and the
function de�ne the game tree.

Nodes are game states.

Edges are actions.

utility(s, p)
s p

1 0 2
1

actions(s) result(s, a)

8 / 58

Zero-sum games

In a zero-sum game, the total payoff to all players is constant for all games.

e.g., in chess: , or .

For two-player games, agents share the same utility function, but one
wants to maximize it while the other wants to minimize it.

MAX maximizes the game's function.

MIN minimizes the game's function.

Strict competition.

If one wins, the other loses, and vice-versa.

0 + 1 1 + 0 +2
1

2
1

utility

utility

―
Image credits: CS188, UC Berkeley. 9 / 58

https://inst.eecs.berkeley.edu/~cs188/

Tic-Tac-Toe game tree

What is an optimal strategy (or perfect play)? How do we �nd it?

10 / 58

Assumptions
We assume a deterministic, turn-taking, two-player zero-sum game with
perfect information.

e.g., Tic-Tac-Toe, Chess, Checkers, Go, etc.

We will call our two players MAX and MIN. MAX moves �rst.

―
Image credits: CS188, UC Berkeley. 11 / 58

https://inst.eecs.berkeley.edu/~cs188/

In a search problem, the optimal solution is a
sequence of actions leading to a goal state.

i.e., a terminal state where MAX wins.

In a game, the opponent (MIN) may react
arbitrarily to a move.

Therefore, a player (MAX) must de�ne a
contingent strategy which speci�es

its moves in the initial state,

its moves in the states resulting from every possible
response by MIN,

its moves in the states resulting from every possible
response by MIN in those states, ...

Adversarial search

―
Image credits: CS188, UC Berkeley. 12 / 58

https://inst.eecs.berkeley.edu/~cs188/

Minimax
The minimax value is the largest achievable payoff (for MAX) from
state , assuming an optimal adversary (MIN).

The optimal next move (for MAX) is to take the action that maximizes the
minimax value in the resulting state.

Assuming that MIN is an optimal adversary that maximizes the worst-case
outcome for MAX.

This is equivalent to not making an assumption about the strength of the
opponent.

minimax(s)
s

13 / 58

14 / 58

Properties of Minimax

Completeness:
Yes, if tree is �nite.

Optimality:

Yes, if MIN is an optimal opponent.

What if MIN is suboptimal?

Show that MAX will do even better.

What if MIN is suboptimal and predictable?

Other strategies might do better than Minimax. However they may do worse on an optimal opponent.

15 / 58

Minimax ef�ciency

Assume is implemented using its recursive de�nition.

How e�cient is minimax?

Time complexity: same as DFS, i.e., .

Space complexity:

, if all actions are generated at once, or

, if actions are generated one at a time.

Do we need to explore the whole game tree?

minimax(s)

O(b)m

O(bm)

O(m)

16 / 58

Pruning

Therefore, it is possible to compute the correct minimax decision without
looking at every node in the tree.

17 / 58

18 / 58

We want to compute , for
=MIN.

We loop over 's children.

The minimax values are being computed one
at a time and is updated iteratively.

Let be the best value (i.e., the highest) at any
choice point along the path for MAX.

If becomes lower than , then will never
be reached in actual play.

Therefore, we can stop iterating over the
remaining 's other children.

v = minimax(n)
player(n)

n

v

α

v α n

n

19 / 58

Similarly, is de�ned as the best value (i.e., lowest) at any choice point along
the path for MIN. We can halt the expansion of a MAX node as soon as
becomes larger than .

- pruning

Updates the values of and as the path is expanded.

Prune the remaining branches (i.e., terminate the recursive calls) as soon
as the value of the current node is known to be worse than the current or

 value for MAX or MIN, respectively.

β

v

β

α β

α β

α

β

20 / 58

- searchα β

21 / 58

Properties of - search

Pruning has no effect on the minimax values. Therefore, completeness and
optimality are preserved from Minimax.

Time complexity:

The effectiveness depends on the order in which the states are examined.

If states could be examined in perfect order, then search examines only

nodes to pick the best move, vs. for minimax.

 can solve a tree twice as deep as minimax can in the same amount of time.

Equivalent to an effective branching factor .

Space complexity: , as for Minimax.

α β

α− β O(b)m/2

O(b)m

α− β

b

O(m)

22 / 58

Game tree size

Chess:

 (approximate average branching factor)

 (depth of a game tree for typical games)

.

For search and perfect ordering, we get .

Finding the exact solution with Minimax remains intractable.

b ≈ 35

d ≈ 100

b ≈ 35 ≈ 10d 100 154

α− β b ≈ 35 = 10d/2 50 77

23 / 58

Transposition table
Repeated states occur frequently because of transpositions: distinct
permutations of the move sequence end in a same position.

Similarly to the closed set in Graph-Search (Lecture 2), it is worth storing
the evaluation of a state such that further occurrences of the state do not
have to be recomputed.

What data structure should be used to e�ciently store and look-up values
of positions?

24 / 58

Imperfect real-time decisions
Under time constraints, searching for the exact solution is not feasible in
most realistic games.

Solution: cut the search earlier.

Replace the function with a heuristic evaluation function that
estimates the state utility.

Replace the terminal test by a cutoff test that decides when to stop expanding a state.

Can search be adapted to implement H-Minimax?

utility(s) eval(s)

α− β

25 / 58

Evaluation functions

An evaluation function returns an estimate of the expected utility of
the game from a given position .

The computation must be short (that is the whole point to search faster).

Ideally, the evaluation should order states in the same way as in Minimax.

The evaluation values may be different from the true minimax values, as long as order is
preserved.

In non-terminal states, the evaluation function should be strongly
correlated with the actual chances of winning.

eval(s)
s

26 / 58

Quiescence

These states only differ in the position of the rook at lower right.

However, Black has advantage in (a), but not in (b).

If the search stops in (b), Black will not see that White's next move is to
capture its Queen, gaining advantage.

Cutoff should only be applied to positions that are quiescent.
i.e., states that are unlikely to exhibit wild swings in value in the near future.

27 / 58

The horizon effect
Evaluations functions are always imperfect.

If not looked deep enough, bad moves may appear as good moves (as
estimated by the evaluation function) because their consequences are
hidden beyond the search horizon.

and vice-versa!

Often, the deeper in the tree the evaluation function is buried, the less the
quality of the evaluation function matters.

28 / 58

Cutoff at depth 2, evaluation = the closer to the dot, the better.

0:00 / 0:14

―
Image credits: CS188, UC Berkeley. 29 / 58

https://inst.eecs.berkeley.edu/~cs188/

Cutoff at depth 10, evaluation = the closer to the dot, the better.

0:00 / 0:25

―
Image credits: CS188, UC Berkeley. 30 / 58

https://inst.eecs.berkeley.edu/~cs188/

Multi-agent games
What if the game is not zero-sum, or has multiple players?

Generalization of Minimax:

Terminal states are labeled with utility tuples (1 value per player).

Intermediate states are also labeled with utility tuples.

Each player maximizes its own component.

May give rise to cooperation and competition dynamically.

―
Image credits: CS188, UC Berkeley. 31 / 58

https://inst.eecs.berkeley.edu/~cs188/

Stochastic games

32 / 58

Stochastic games
In real life, many unpredictable external events can put us into unforeseen
situations.

Games that mirror this unpredictability are called stochastic games. They
include a random element, such as:

explicit randomness: rolling a dice;

actions may fail: when moving a robot, wheels might slip.

―
Image credits: CS188, UC Berkeley. 33 / 58

https://inst.eecs.berkeley.edu/~cs188/

In a game tree, this random element can be modeled with chance nodes
that map a state-action pair to the set of possible outcomes, along with
their respective probability.

This is equivalent to considering the environment as an extra random agent
player that moves after each of the other players.

―
Image credits: CS188, UC Berkeley. 34 / 58

https://inst.eecs.berkeley.edu/~cs188/

Stochastic game tree

35 / 58

Expectiminimax
Because of the uncertainty in the action outcomes, states no longer have a
de�nite value.

However, we can calculate the expected value of a state under optimal play
by the opponent.

i.e., the average over all possible outcomes of the chance nodes.

 values correspond instead to the worst-case outcome.

Does taking the rational move mean the agent will be successful?

minimax

minimax

36 / 58

Evaluation functions

As for , the value of may be
approximated by stopping the recursion early and using an evaluation
function.

However, to obtain correct move, the evaluation function should be a
positive linear transformation of the expected utility of the state.

It is not enough for the evaluation function to just be order-preserving.

If we assume bounds on the utility function, search can be adapted
to stochastic games.

An order-preserving transformation on leaf values changes the best move.

minimax(n) expectiminimax(n)

α− β

37 / 58

Monte Carlo Tree Search

Random playout evaluation

To evaluate a state, have the algorithm play against itself using random
moves, thousands of times.

The sequence of random moves is called a random playout.

Use the proportion of wins as the state evaluation.

This strategy does not require domain knowledge!

The game engine is all that is needed.

38 / 58

Monte Carlo Tree Search

The focus of MCTS is the analysis of the most promising moves, as
incrementally evaluated with random playouts.

Each node in the current search tree maintains two values:

the number of wins of player for all playouts that passed through
;

the number of times has been visited.

n

Q(n, p) p

n

N(n) n

39 / 58

The algorithm searches the game tree as follows:

1. Selection: start from root, select successive child nodes down to a node
that is not fully expanded.

2. Expansion: unless is a terminal state, create a new child node .

3. Simulation: play a random playout from .

4. Backpropagation: use the result of the playout to update information in the
nodes on the path from to the root.

Repeat 1-4 for as long the time budget allows. Pick the best next direct move.

n

n n′

n′

n′

40 / 58

41 / 58

Exploration and exploitation

Given a limited budget of random playouts, the e�ciency of MCTS critically
depends on the choice of the nodes that are selected at step 1.

During the traversal of the branch in the selection step, the UCB1 policy picks
the child node of that maximizes

The �rst term encourages the exploitation of higher-reward nodes.

The second term encourages the exploration of less-visited nodes.

The constant controls the trade-off between exploitation and
exploration.

n′ n

+ c .
N(n)′
Q(n , p)′

N(n)′
logN(n)

c > 0

42 / 58

Modeling assumptions

43 / 58

What if our assumptions are incorrect?

―
Image credits: CS188, UC Berkeley. 44 / 58

https://inst.eecs.berkeley.edu/~cs188/

Setup

: Pacman uses depth 4 search with an
evaluation function that avoids trouble, while
assuming that the ghost follows .

: Ghost uses depth 2 search with an
evaluation function that seeks Pacman, while
assuming that Pacman follows .

: Pacman uses depth 4 search with an
evaluation function that avoids trouble, while
assuming that the ghost follows

: Ghost makes random moves.

P1

P2

P2

P1

P3

P4

P4

45 / 58

Minimax Pacman () vs. Adversarial ghost ()

0:00 / 0:09

P1 P2

―
Image credits: CS188, UC Berkeley. 46 / 58

https://inst.eecs.berkeley.edu/~cs188/

Minimax Pacman () vs. Random ghost ()

0:00 / 0:43

P1 P4

―
Image credits: CS188, UC Berkeley. 47 / 58

https://inst.eecs.berkeley.edu/~cs188/

Expectiminimax Pacman () vs. Random ghost ()

0:00 / 0:03

P3 P4

―
Image credits: CS188, UC Berkeley. 48 / 58

https://inst.eecs.berkeley.edu/~cs188/

Expectiminimax Pacman () vs. Adversarial ghost ()

0:00 / 0:07

P3 P2

―
Image credits: CS188, UC Berkeley. 49 / 58

https://inst.eecs.berkeley.edu/~cs188/

State-of-the-art game programs

50 / 58

Checkers

1951

First computer player by Christopher Strachey.

1994

The computer program Chinook ends the 40-year-reign of human champion
Marion Tinsley.

Library of opening moves from grandmasters;

A deep search algorithm;

A good move evaluation function (based on a linear model);

A database for all positions with eight pieces or fewer.

51 / 58

2007

Checkers is solved. A weak solution is computationally proven.

The number of involved calculations was , over a period of 18 years.

A draw is always guaranteed provided neither player makes a mistake.

1014

―
Schaeffer, Jonathan, et al. "Checkers is solved." science 317.5844 (2007): 1518-1522. 52 / 58

Chess

1997

Deep Blue defeats human champion Gary Kasparov.

 position evaluations per second.

Very sophisticated evaluation function.

Undisclosed methods for extending some lines of search up to 40 plies.

Modern programs (e.g., Stock�sh or AlphaZero) are better, if less historic.

Chess remains unsolved due to the complexity of the game.

200000000

53 / 58

Go
For long, Go was considered as the Holy Grail of AI due to the size of its game
tree.

On a 19x19, the number of legal positions is .

This results in games, considering a length of or less.

±2 × 10170

±10800 400

54 / 58

2010-2014

Using Monte Carlo tree search and machine learning, computer players reach
low dan levels.

2015-2017

Google Deepmind invents AlphaGo.

2015: AlphaGo beat Fan Hui, the European Go Champion.

2016: AlphaGo beat Lee Sedol (4-1), a 9-dan grandmaster.

2017: AlphaGo beat Ke Jie, 1st world human player.

AlphaGo combines Monte Carlo tree search and deep learning with extensive
training, both from human and computer play.

55 / 58

Arti�cial intelligence Arti�cial intelligence Go master Lee Se dol wins Go master Lee Se dol wins ……
Later bekijLater bekij…… DelenDelen

Press coverage for the victory of AlphaGo against Lee Sedol.

56 / 58

https://www.youtube.com/watch?v=m2QFSocFeOQ

2017

AlphaGo Zero combines Monte Carlo tree search and deep learning with
extensive training, with self-play only

―
Credits: AlphaGo Zero: Learning from scratch 57 / 58

https://deepmind.com/blog/alphago-zero-learning-scratch/

Summary
Multi-player games are variants of search problems.

The di�culty is to account for the fact that the opponent may act arbitrarily.

The optimal solution is a strategy, and not a �xed sequence of actions.

Minimax is an optimal algorithm for deterministic, turn-taking, two-player
zero-sum game with perfect information.

Due to practical time constraints, exploring the whole game tree is often infeasible.

Approximations can be achieved with heuristics, reducing computing times.

Minimax can be adapted to stochastic games.

Minimax can be adapted to games with more than 2 players.

Optimal behavior is relative and depends on the assumptions we make
about the world.

58 / 58

The end.

58 / 58

