
Introduction to Arti�cial Intelligence
Lecture 2: Solving problems by searching

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 67

mailto:g.louppe@uliege.be

2 / 67

Planning agents

Search problems

Uninformed search methods

Depth-�rst search

Breadth-�rst search

Uniform-cost search

Informed search methods
A*

Heuristics

Today

―
Image credits: CS188, UC Berkeley. 3 / 67

https://inst.eecs.berkeley.edu/~cs188/

Planning agents

4 / 67

Re�ex agents
Re�ex agents

select actions on the basis of the current percept;

may have a model of the world current state;

do not consider the future consequences of their actions;

consider only how the world is now.

For example, a simple re�ex agent based on condition-action rules could move
to a dot if there is one in its neighborhood. No planning is involved to take this decision.

5 / 67

Problem-solving agents
Assumptions:

Single-agent, observable, deterministic and known environment.

Problem-solving agents

take decisions based on (hypothesized) consequences of actions, by
considering how the world could be;

must have a model of how the world evolves in response to actions;

formulate a goal, explicitly.

A planning agent looks for sequences of actions to eat all the dots.

6 / 67

7 / 67

Of�ine vs. Online solving

Problem-solving agents are o�ine. The solution is executed "eyes closed",
ignoring the percepts.

Online problem solving involves acting without complete knowledge. In this
case, the sequence of actions might be recomputed at each step.

8 / 67

Search problems

9 / 67

Search problems
A search problem consists of the following components:

A representation of the states of the agent and its environment.

The initial state of the agent.

A description of the actions available to the agent given a state , denoted
.

A transition model that returns the state that results from
doing action in state .

We say that is a successor of if there is an acceptable action from to .

s

actions(s)

s = result(s, a)′

a s

s′ s s s′

10 / 67

Together, the initial state, the actions and the transition model de�ne the
state space of the problem, i.e. the set of all states reachable from the initial
state by any sequence of action.

The state space forms a directed graph:

nodes = states

links = actions

A path is a sequence of states connected by actions.

A goal test which determines whether the solution of the problem is
achieved in state .

A path cost that assigns a numeric value to each path.

In this course, we will also assume that the path cost corresponds to a sum of positive step

costs associated to the action in leading to .

s

c(s, a, s)′ a s s′

11 / 67

A solution to a problem is an action sequence that leads from the initial state to
a goal state.

A solution quality is measured by the path cost function.

An optimal solution has the lowest path cost among all solutions.

Exercise
What if the environment is partially observable? non-deterministic?

12 / 67

Example: Traveling in Romania

How to go from Arad to Bucharest?

13 / 67

Initial state = the city we start in.

Actions = Going from the current city to the cities that are directly
connected to it.

Transition model = The city we arrive in after driving to it.

Goal test: whether we are in Bucharest.

Step cost: distances between cities.

s = in(Arad)0

actions(s) = {go(Sibiu), go(Timisoara), go(Zerind)}0

result(in(Arad), go(Zerind)) = in(Zerind)

s ∈ {in(Bucharest)}

14 / 67

Selecting a state space
The real world is absurdly complex.

The world state includes every last detail of the environment.

A search state keeps only the details needed for planning.

Search problems are models.

―
Image credits: CS188, UC Berkeley. 15 / 67

https://inst.eecs.berkeley.edu/~cs188/

Example: eat-all-dots

States:

Actions: NSEW

Transition: update location and possibly a dot boolean

Goal test: dots all false

{(x, y), dot booleans}

16 / 67

World state:

Agent positions: 120

Found count: 30

Ghost positions: 12

Agent facing: NSEW

How many?
World states?

States for eat-all-dots?

State space size

120 × 2 × 12 × 430 2

120 × 230

17 / 67

Search trees
The set of acceptable sequences starting at the initial state form a search tree.

Nodes correspond to states in the state space, where the initial state is the
root node.

Branches correspond to applicable actions, with child nodes corresponding
to successors.

For most problems, we can never actually build the whole tree. Yet we want to
�nd some optimal branch!

18 / 67

Tree search algorithms

Important ideas

Fringe (or frontier) of partial plans under consideration

Expansion

Exploration

19 / 67

Exercise
Which fringe nodes to explore? How to expand as few nodes as possible,
while achieving the goal?

20 / 67

21 / 67

Uninformed search strategies
Uninformed search strategies use only the information available in the problem
de�nition. They do not know whether a state looks more promising than some
other.

Strategies

Depth-�rst search

Breadth-�rst search

Uniform-cost search

Iterative deepening

22 / 67

Properties of search strategies
A strategy is de�ned by picking the order of expansion.

Strategies are evaluated along the following dimensions:

Completeness: does it always �nd a solution if one exists?

Optimality: does it always �nd the least-cost solution?

Time complexity: how long does it take to �nd a solution?

Space complexity: how much memory is needed to perform the search?

Time and complexity are measured in terms of

: maximum branching factor of the search tree

: depth of the least-cost solution

the depth of is de�ned as the number of actions from the initial state to .

: maximum length of any path in the state space (may be)

b

d

s s

m ∞

23 / 67

24 / 67

Depth-�rst search

―
Image credits: CS188, UC Berkeley. 25 / 67

https://inst.eecs.berkeley.edu/~cs188/

Strategy: expand the deepest node in the fringe.

Implementation: fringe is a LIFO stack.

26 / 67

27 / 67

Properties of DFS

Completeness:

 could be in�nite, so only if we prevent cycles (more on this later).

Optimality:

No, DFS �nds the leftmost solution, regardless of depth or cost.

Time complexity:

May generate the whole tree (or a good part of it, regardless of). Therefore , which
might be much greater than the size of the state space!

Space complexity:

Only store siblings on path to root, therefore .

When all the descendants of a node have been visited, the node can be removed from memory.

m

d O(b)m

O(bm)

28 / 67

Breadth-�rst search

―
Image credits: CS188, UC Berkeley. 29 / 67

https://inst.eecs.berkeley.edu/~cs188/

Strategy: expand the shallowest node in the fringe.

Implementation: fringe is a FIFO queue.

30 / 67

31 / 67

Properties of BFS

Completeness:

If the shallowest goal node is at some �nite depth , BFS will eventually �nd it after generating

all shallower nodes (provided is �nite).

Optimality:

The shallowest goal is not necessarily the optimal one.

BFS is optimal only if the path cost is a non-decreasing function of the depth of the node.

Time complexity:

If the solution is at depth , then the total number of nodes generated before �nding this node

is

Space complexity:

The number of nodes to maintain in memory is the size of the fringe, which will be the largest

at the last tier. That is

d

b

d

b+ b + b + ... + b = O(b)2 3 d d

O(b)d

32 / 67

(demo)

33 / 67

Exercise

What are the properties of
iterative deepening?

Isn't this process wastefully
redundant?

Iterative deepening
Idea: get DFS's space advantages with BFS's time/shallow solution advantages.

Run DFS with depth limit 1.

If no solution, run DFS with depth limit 2.

If no solution, run DFS with depth limit 3.

...

34 / 67

Uniform-cost search

―
Image credits: CS188, UC Berkeley. 35 / 67

https://inst.eecs.berkeley.edu/~cs188/

Strategy: expand the cheapest node in the fringe.

Implementation: fringe is a priority queue, using the cumulative cost
from the initial state to node as priority.

g(n)
n

36 / 67

37 / 67

Properties of UCS

Completeness:

Yes, if step cost are all such that . (Why?)

Optimality:

Yes, sinces UCS expands nodes in order of their optimal path cost.

Time complexity:

Assume is the cost of the optimal solution and that step costs are all .

The "effective depth" is then roughly .

The worst-case time complexity is .

Space complexity:

The number of nodes to maintain is the size of the fringe, so as many as in the last tier

.

c(s, a, s) ≥ ϵ > 0′

C∗ ≥ ϵ

C /ϵ∗

O(b)C /ϵ∗

O(b)C /ϵ∗

38 / 67

(demo)

39 / 67

Informed search strategies

One of the issues of UCS is that it explores the state space in every direction,
without exploiting information about the (plausible) location of the goal node.

Informed search strategies aim to solve this problem by expanding nodes in the
fringe in decreasing order of desirability.

Greedy search

A*

40 / 67

Greedy search

―
Image credits: CS188, UC Berkeley. 41 / 67

https://inst.eecs.berkeley.edu/~cs188/

Heuristics

A heuristic (or evaluation) function is:

a function that estimates the cost of the cheapest path from node to a
goal state;

 for all nodes

 for a goal state.

is designed for a particular search problem.

h(n)

n

h(n) ≥ 0 n

h(n) = 0

42 / 67

Greedy search

Strategy: expand the node in the fringe for which is the lowest.

Implementation: fringe is a priority queue, using as priority.

n h(n)

h(n)

43 / 67

 = straight line distance to Bucharest.h(n) 44 / 67

At best, greedy search takes you straight to the goal.
At worst, it is like a badly-guided BFS.

45 / 67

Properties of greedy search

Completeness:
No, unless we prevent cycles (more on this later).

Optimality:

No, e.g. the path via Sibiu and Fagaras is 32km longer than the path through Rimnicu Vilcea
and Pitesti.

Time complexity:

, unless we have a good heuristic function.

Space complexity:

, unless we have a good heuristic function.

O(b)m

O(b)m

46 / 67

A*

―
Image credits: CS188, UC Berkeley. 47 / 67

https://inst.eecs.berkeley.edu/~cs188/

Shakey the Robot

A* was �rst proposed in 1968 to
improve robot planning.

Goal was to navigate through a
room with obstacles.

48 / 67

A*

Uniform-cost orders by path cost, or backward cost

Greedy orders by goal proximity, or forward cost

A* combines the two algorithms and orders by the sum

 is the estimated cost of cheapest solution through .

g(n)

h(n)

f (n) = g(n) + h(n)

f (n) n

49 / 67

50 / 67

Exercise
Why doesn't A* stop at step (e), since Bucharest is in the fringe?

51 / 67

Admissible heuristics

A heuristic is admissible if

where is the true cost to a nearest goal.

The Manhattan distance is admissible

h

0 ≤ h(n) ≤ h (n)∗

h (n)∗

52 / 67

Assumptions:

 is an optimal goal node

 is a suboptimal goal node

 is admissible

Claim: will exit the fringe before .

Optimality of A*

A

B

h

A B

53 / 67

Proof

Assume is on the fringe. Some ancestor of
is on the fringe too.

 (by de�nition)

 (admissibility of)

 (at a
goal)

 (is suboptimal)

 (at a goal)

Therefore, expands before .

since

Similarly, all ancestors of expand before , including . Therefore A* is
optimal.

B n A

f (n) ≤ f (A)

f (n) = g(n) + h(n)

f (n) ≤ g(A) h

f (A) = g(A) + h(A) = g(A) h = 0

f (A) < f (B)

g(A) < g(B) B

f (A) < f (B) h = 0

n B

f (n) ≤ f (A) < f (B)

A B A

54 / 67

For UCS (for all), bands
are circular around the start.

For A* with accurate heuristics, bands
stretch towards the goal.

A* contours

Assume -costs are non-decreasing along any path.

We can de�ne contour levels in the state space, that include all nodes
for which .

f

t n

f (n) ≤ t

h(n) = 0 n

55 / 67

Greedy search UCS A*

―
Image credits: CS188, UC Berkeley. 56 / 67

https://inst.eecs.berkeley.edu/~cs188/

(demo)

57 / 67

Creating admissible heuristics
Most of the work in solving hard search problems optimally is in �nding
admissible heuristics.

Admissible heuristics can be derived from the exact solutions to relaxed
problems, where new actions are available.

58 / 67

Dominance

If and are both admissible and if for all , then
dominates and is better for search.

Given any admissible heuristics and ,

is also admissible and dominates and .

h1 h2 h (n) ≥ h (n)2 1 n h2
h1

ha hb

h(n) = max(h (n), h (n))a b

ha hb

59 / 67

Learning heuristics from experience

Assuming an episodic environment, an agent can learn good heuristics by
playing the game many times.

Each optimal solution provides training examples from which can
be learned.

Each example consists of a state from the solution path and the actual
cost of the solution from that point.

The mapping can be learned with supervised learning
algorithms.

Linear models, Neural networks, etc.

s∗ h(n)

n

g(s)∗

n→ g(s)∗

60 / 67

Graph search

The failure to detect repeated states can turn a linear problem into an
exponential one. It can also lead to non-terminating searches.

Redundant paths and cycles can be avoided by keeping track of the states that
have been explored. This amounts to grow a tree directly on the state-space
graph.

61 / 67

62 / 67

A* graph-search gone wrong?

We start at and is a goal
state.

Which path does graph search
�nd?

S G

63 / 67

Consistent heuristics

A heuristic is consistent if for every and every
successor generated by any action ,

Consequences of consistent heuristics:

 is non-decreasing along any path.

 is admissible.

With a consistent heuristic, graph-search A* is optimal.

h n

n′ a

h(n) ≤ c(n, a, n) + h(n).′ ′

f (n)

h(n)

64 / 67

Recap example: Super Mario

Task environment?

performance measure, environment, actuators, sensors?

Type of environment?

Search problem?

initial state, actions, transition model, goal test, path cost?

Good heuristic?
65 / 67

In�nite Mario AI - Long LevelIn�nite Mario AI - Long Level
Later bekijLater bekij…… DelenDelen

A* in action

66 / 67

https://www.youtube.com/watch?v=DlkMs4ZHHr8

Summary
Problem formulation usually requires abstracting away real-world details to
de�ne a state space that can feasibly be explored.

Variety of uninformed search strategies (DFS, BFS, UCS, Iterative
deepening).

Heuristic functions estimate costs of shortest paths. Good heuristic can
dramatically reduce search cost.

Greedy best-�rst search expands lowest , which shows to be incomplete
and not always optimal.

A* search expands lowest . This strategy is complete and
optimal.

Graph search can be exponentially more e�cient than tree search.

h

f = g + h

67 / 67

The end.

67 / 67

