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Help me pick
a gift for my dad who loves fishing

Make up a story
about Sharky, a tooth-brushing shark superhero
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In the 1960s, Armstrong
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In the 1960s, Armstrong performed
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In the 1960s, Armstrong performed a moonwalk
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In the 1960s, Armstrong performed a moonwalk on the
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In the 1960s, Armstrong performed a moonwalk on the lunar
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In the 1960s, Armstrong performed a moonwalk on the lunar surface

and said
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This explains why large language models ...

e invent things and cannot cite sources;
e never produce the same answers;
e cannot count, compute, or reason*;

e can hardly correct their own mistakes once they have been made.

*. At least not with a vanillatransformer and a greedy decoding strategy.
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Rock, Paper, Scissors with GPT-40 Y ~»
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Not just text, but also images and sounds.
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https://www.youtube.com/watch?v=fWWCdqyYRPI

Artificial Intelligence



"With artificial intelligence we are summoning the demon" -- Elon Musk, 2014.



"We're really closer to a smart washing machine than Terminator" -- Fei-Fei Li,
Director of Stanford Al Lab, 2017.
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Yann LeCun, 2018.
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https://www.dailymotion.com/video/x7kvtfn
https://enterprise.dailymotion.com/?utm_medium=tr&utm_source=0.0.0.0&utm_campaign=offsite_logo&utm_content=cta

Al 'godfather' quits Google over dangers of ...

‘Al could
be smarter
than us’

B EE NEWS

Geoffrey Hinton, 2023.
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https://www.youtube.com/watch?v=DsBGaHywRhs

s> Yann LeCun | Imagination In Action | Davos ... Y ~»
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IMAGINATION IN ACTION

Yann LeCun, 2023.
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https://www.youtube.com/watch?v=YdaRd_vitLw

A definition of Al?

"Artificial intelligence is the science of making machines do things that would
require intelligence if done by men." -- Marvin Minsky, 1968.
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The Turing test

A computer passes the Turing test (aka the Imitation Game) if a human
operator, after posing some written questions, cannot tell whether the written
responses come from a person or from a computer.

Can machines think?
(Alan Turing, 1950)
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An agent would not pass the Turing test without the following requirements:

Despite being proposed almost 70 years ago, the Turing test is still relevant

natural language processing
knowledge representation
automated reasoning

machine learning

computer vision (total Turing test)

robotics (total Turing test)

today.
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The Turing test tends to focus on human-like errors, linguistic tricks, etc.

However, it seems more important to study the principles underlying
intelligence than to replicate an exemplar.
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Aeronautics is not defined as the field of making machines
that fly so exactly like pigeons that they can fool even other pigeons.
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A modern definition of Al

An ‘Al system’ is a machine-based system that is designed to operate with
varying levels of autonomy and that may exhibit adaptiveness after deployment,
and that, for explicit or implicit objectives, infers, from the input it receives, how
to generate outputs such as predictions, content, recommendations, or
decisions that can influence physical or virtual environments. -- European Al
Act, Article 3,2024.

Regulation (EU) 2024/1689.


https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ%3AL_202401689#d1e2090-1-1

A short history of Al

1940-1950: Early days

e 1943: McCulloch and Pitts: Boolean circuit model of the brain.

e 1950: Turing's "Computing machinery and intelligence”.

1950-1970: Excitement and expectations

1950s: Early Al programs, including Samuel's checkers program, Newell and
Simon's Logic Theorist and Gelernter's Geometry Engine.

1956: Dartmouth meeting: "Artificial Intelligence" adopted.

1958: Rosenblatt invents the perceptron.

1965: Robinson's complete algorithm for logical reasoning.

1966-1974: Al discovers computational complexity.



=

The Darthmouth workshop (1956)

The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it.
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t‘? The Thinking iney(Ari ,‘l_,c-:ialil'ﬁtglli'rg

20/45


https://www.youtube.com/watch?v=aygSMgK3BEM

1970-1990: Knowledge-based approaches

e 1969: Neural network research almost disappears after Minsky and Papert's
book (1st Al winter).

e 1969-1979: Early development of knowledge-based systems.
e 1980-1988: Expert systems industrial boom.
e 1988-1993: Expert systems industry busts (2nd Al winter).



1990-Present: Statistical approaches

e 1985-1995: The return of neural networks.

e 1988-: Resurgence of probability, focus on uncertainty, general increase in
technical depth.

e 1995-2010: New fade of neural networks.

e 2000-: Availability of very large datasets.

e 2010-: Availability of fast commodity hardware (GPUs).

e 2012- Resurgence of neural networks with deep learning approaches.
e 2017: Attention is all you need (transformers).

e 2022:ChatGPT released to the public.



The deep learning revolution
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Credits: Frangois Fleuret, 2023.
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Deep learning scales up the statistical and machine learning approaches by

e using larger models known as neural networks,
e training on larger datasets,

e uUsing more compute resources.




Specialized neural networks can be trained achieve super-human performance
on many complex tasks that were previously thought to be out of reach for
machines.

I: Jane went to the hallway.

I: Mary walked to the bathroom.
I: Sandra went to the garden.

I: Daniel went back to the garden.
I: Sandra took the milk there.

Q: Where is the milk?

A: garden

(Top) Scene understanding, pose estimation, geometric reasoning.
(Bottom) Planning, Image captioning, Question answering.

Credits: Frangois Fleuret, 2023. 26 /45



Neural networks form primitives that can be transferred to many domains.

Target Measurement
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(Top) Analysis of histological slides, denoising of MRl images, nevus detection.
(Bottom) Whole-body hemodynamics reconstruction from PPG signals.
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The breakthrough

Decoder
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A brutal simplicity:

e The more data, the better the model.
e The more parameters, the better the model.

e The more compute, the better the model.

Scaling up further to gigantic models, datasets, and compute resources keeps
pushing the boundaries of what is possible, with no sign of slowing down.
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Conversational Al assistants (Anthropic, 2024)
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https://www.youtube.com/watch?v=-dWfl7Dhb0o
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Code assistants (Cursor, 2024)
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https://www.youtube.com/watch?v=o5uvDZ8srHA

Autonomous cars (Waymo, 2022)
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https://www.youtube.com/watch?v=hA_-MkU0Nfw

Powering the Future of Clean Energy | | AM ... Y ~»
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LLML Fusion Reactor

Powering the future of clean energy (NVIDIA, 2023)
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https://www.youtube.com/watch?v=zrcxLZmOyNA

How Al is advancing medicine (Google, 2018)
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https://www.youtube.com/watch?v=AbdVsi1VjQY

Deep learning can also solve problems that no one could solve before.



AlphaFold: From a sequence of amino acids to a 3D structure

nature

Explore content ~  About the journal ~  Publish with us ~

nature » articles » article

Article | Open access | Published: 15 July 2021

Highly accurate protein structure prediction with
AlphaFold

John Jumper &, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn

Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A.

A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,

Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, .. Demis Hassabis &

+ Show authors

Nature 596, 583-589 (2021) | Cite this article

1.42m Accesses | 12k Citations | 3493 Altmetric | Metrics

Abstract

Proteins are essential to life, and understanding their structure can facilitate a mechanistic
understanding of their function. Through an enormous experimental effortl224, the
structures of around 100,000 unique proteins have been determined?, but this represents a
small fraction of the billions of known protein sequences®Z, Structural coverage is
bottlenecked by the months to years of painstaking effort required to determine a single
protein structure. Accurate computational approaches are needed to address this gap and to
enable large-scale structural bioinformatics. Predicting the three-dimensional structure that
aprotein will adopt based solely on its amino acid sequence—the structure prediction
component of the ‘protein folding problem’8—has been an important open research problem
for more than 50 yearsZ. Despite recent progress!&IL121214 existing methods fall far short of 36 /45
atomic accuracy, especially when no homologous structure is available. Here we provide the



(@) AlphaFold: The making of a scientific breakt... L ~»

Al for Science (Deepmind, AlphaFold, 2020)
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https://www.youtube.com/watch?v=gg7WjuFs8F4

Drug discovery with graph neural networks

Cell

A Deep Learning Approach to Antibiotic Discovery
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In Brief

A trained deep neural network predicts
antibiotic activity in molecules that are
structurally different from known
antibiotics, among which Halicin exhibits
efficacy against broad-spectrum
bacterial infections in mice.



GraphCast: fast and accurate weather forecasts

a) Input weather state b) Predict the next state c) Roll out a forecast

GraphCast

0
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INFO8006 Introduction to Al



Course outline

e Lecture 0: Artificial intelligence

e Lecture 1:Intelligent agents

e Lecture 2: Solving problems by searching

e Lecture 3: Adversarial search

e Lecture 4: Quantifying uncertainty

e Lecture 5: Probabilistic reasoning

e [ecture 6: Reasoning over time

e Lecture 7: Machine learning and neural networks
e Lecture 8: Making decisions

e Lecture 9: Reinforcement learning
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My mission

By the end of this course, you will have built autonomous agents that efficiently
make decisions in fully informed, partially observable and adversarial settings.
Your agents will draw inferences in uncertain and unknown environments and
optimize actions for arbitrary reward structures.

The models and algorithms you will learn in this course apply to a wide variety
of artificial intelligence problems and will serve as the foundation for further
study in any application area (from engineering and science, to business and
medicine) you choose to pursue.



Goals and philosophy
General
« Understand the landscape of artificial intelligence.
e Be able to write from scratch, debug and run (some) Al algorithms.

Well-established and state-of-the-art algorithms

e Good old-fashioned Al: well-established algorithms for intelligent agents
and their mathematical foundations.

 Introduction to materials new from research (< 5 years old).
e Understand some of the open questions and challenges in the field.

Practical

e Fun and challenging course projects.
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Going further

This course is designed as an introduction to the many other courses available
at ULiege and (broadly) related to Al, including:

e INFO8006: Introduction to Artificial Intelligence <— you are there
e DATS0001: Foundations of Data Science

e ELENOO062: Introduction to Machine Learning

e INFOB010: Deep Learning

e INFO8004: Advanced Machine Learning

e INFO9023: Machine Learning Systems Design

e INFO8003: Optimal decision making for complex problems

e INFO0948: Introduction to Intelligent Robotics

e INFO9014: Knowledge representation and reasoning

e ELENOOT6: Computer vision



The end.
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