
Introduction to Artificial Intelligence (INFO8006)
Exercise session 7

Markov decision processes

A Markov decision process is a tuple (S,A, P, R) such that:
• S is a set of states s;
• S is a set of actions a;
• P is a (stationary) transition model such that P (s′ | s, a) denotes the probability of

reaching state s′ if action a is done in state s;
• R is reward function that maps immediate (finite) reward values R(s) obtained in

states s.

Bellman equation

The utility of a state is the immediate reward for that state, plus the expected discounted
utility of the next state, assuming that the agent chooses the optimal action:

V (s) = R(s) + γ max
a

∑
s′

P (s′ | s, a)V (s′).

Value/policy iteration

The value iteration algorithm provides a fixed-point iteration procedure for computing the
state utilities V (s). By denoting Vi(s) the estimated utility at iteration i and starting from
an initial guess V0(s), we update the estimates to be consistent with Bellman equation:

Vi+1(s) = R(s) + γ max
a

∑
s′

P (s′ | s, a)Vi(s′)

which always converges for γ < 1.

The policy iteration algorithm instead directly computes the policy π by alternating
between value evaluation under the current policy estimate

Vi = V πi

and policy improvement

πi+1(s) = arg max
a

∑
s′

P (s′ | s, a)Vi(s′).

Reinforcement learning

Reinforcement learning is used in unknown MDP, i.e. MDP where the transition model
and the reward function are unknown. The goal is still to extract the optimal policy by
observing or interacting with the environment in order to jointly learn these dynamics and
act upon them.
RL can be decomposed in model-based and model-free methods. The former estimates
explicitly the environment and then use this estimation as the empirical MDP whereas the
latter do not model the environment explicitly.

1

Temporal-difference learning

Temporal-difference learning consists in updating V π(s) each time the agent experiences a
transition (s, r, a, s′) under a policy π.
When a transition from s to s′ occurs, the temporal-difference update steers V π(s) to
better agree with the Bellman equations for a fixed policy, i.e.

V π(s)← V π(s) + α(r + γV π(s′)− V π(s))

where α is the learning rate.

Q-Learning

By defining Q-values as V (s) = maxa Q(s, a), we have

Q(s, a) = R(s) + γ
∑
s′

P (s′ | s, a) max
a′

Q(s′, a′).

The state-action-values Q(s, a) can be learned in a model-free fashion using a temporal-
difference method known as Q-Learning. Q-Learning consists in updating Q(s, a) each
time the agent experiences a transition. The update equation for TD Q-Learning is

Q(s, a)← Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)).

In session exercises: Ex. 1, Ex. 4

2

Part I

Making decisions

Exercise 1 Micro-Blackjack (UC Berkeley CS188, Spring 2014)
In Micro-Blackjack, you repeatedly draw a card (with replacement) that is likely to be a 2, 3
or 4. At each step, if the total score of the cards is lower than 6, you can either “draw” (d) or
“cash” (c). Otherwise, you can only cash. When you cash, the game stops and your utility is
equal to your total score (up to 5) plus 1, or zero if you get a total of 6 or higher. Until you cash
and after it, you receive no reward. There is no discount (γ = 1).

1. Formalize Micro-Blackjack as an MDP.

A Markov decision process (MDP) is a tuple (S, A, P, R), where S is a set of reachable
states, A(s) is a set of available actions, P (s′|s, a) is a (stationary) transition model and
R(s) is a reward function.

In our case,

S ⊂ N× {0, 1}

A(s = (s1, s2)) =

{d, c} if s1 < 6 and s2 = 0
{c} if s2 = 0
{} otherwise

P (s′ = (s′
1, s′

2)|s = (s1, 0), a) =

1 if s′

1 = s1 and s′
2 = 1 and a = c

1
3 if s′

1 − s1 ∈ {2, 3, 4} and s′
2 = 0 and a = d

0 otherwise

R(s = (s1, s2)) =
{

s1 + 1 if s1 < 6 and s2 = 1
0 otherwise

2. Derive the optimal policy for this MDP.

Let (s0, s1, . . . , sl) be a sequence of states, i.e. a path. Its utility is

l∑
t=0

γtR(st),

where γ ∈ (0, 1] is the discount factor. For a policy π : S 7→ A to be optimal, it should
maximize its expected utility

V π(s0) = E
[∞∑

t=0
γtR(st)

]
= R(s0) + γ E[V π(s1)]
= R(s0) + γ

∑
s1

P (s1|s0, π(s0))V π(s1),

where the states st+1 ∼ P (s|st, π(st)). Therefore, we define the value V (s) of a state s is

3

its maximum expected utility, i.e.

V (s) = V π∗(s)
= max

π
V π(s)

= max
π

R(s) + γ
∑
s′

P (s′|s, π(s))V π(s′)

= R(s) + γ max
π

∑
s′

P (s′|s, π(s))V π(s′)

= R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a) max
π

V π(s′)

= R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)V (s′),

where π∗ is the optimal policy

π∗(s) = arg max
a∈A(s)

∑
s′

P (s′|s, a)V (s′).

To find this optimal policy, we can apply either the value iteration or policy iteration
algorithms.

• In value iteration, we estimate the value V (s) by value estimates Vi(s) and update
them with the Bellman operator

Vi+1(s) = (BVi)(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)Vi(s′)

until convergence (Vi+1 = Vi). For our task, it should be noted that all states s = (s1, 1)
are terminal, meaning that they don’t allow to take any actions. Consequently, the
value of these states is exactly their reward, i.e.

V (s = (s1, 1)) = R(s).

Let V0(s) = R(s) be our first value estimate.

s1 0 2 3 4 5 6+ 0 2 3 4 5 6+
s2 0 1

V0(s) 0 0 0 0 0 0 1 3 4 5 6 0
V1(s) 1 3 4 5 6 0 1 3 4 5 6 0
V2(s) 12

3
11
3 4 5 6 0 1 3 4 5 6 0

V3(s) 38
9

11
3 4 5 6 0 1 3 4 5 6 0

V4(s) 38
9

11
3 4 5 6 0 1 3 4 5 6 0

Each iteration of this algorithm takes O(|S|2|A|) operations.

• In policy iteration, we estimate the optimal policy π∗ by policy estimates πi and
update them with

πi+1(s) = arg max
a∈A(s)

∑
s′

P (s′|s, a)V πi(s′),

where V πi is the unique solution of the simplified Bellman equation

V πi(s) = R(s) + γ
∑
s′

P (s′|s, πi(s))V πi(s′).

4

However, finding V πi exactly requires O(|S|3) operations, which is usually intractable.
Instead in modified policy iteration, we keep value estimates Vj and update them with
the simplified Bellman operator

Vj+1(s) = R(s) + γ
∑
s′

P (s′|s, πi)Vj(s′).

After sufficient convergence (Vj+1 ≈ Vj), we update the policy estimate with respect
to the last value estimate

πj(s) = arg max
a∈A(s)

∑
s′

P (s′|s, a)Vj(s′)

and then start updating the value estimates again. The algorithm stops when the
policy estimates have converged. Let V0(s) = R(s) be our first value estimate.

s1 0 2 3 4 5 6+ 0 2 3 4 5 6+
s2 0 1

V0(s) 0 0 0 0 0 0 1 3 4 5 6 0
π0(s) c c c c c c −
V1(s) 1 3 4 5 6 0 1 3 4 5 6 0
π1(s) d d c c c c −
V2(s) 12

3
11
3 4 5 6 0 1 3 4 5 6 0

V3(s) 38
9

11
3 4 5 6 0 1 3 4 5 6 0

π3(s) d d c c c c −

The modified policy iteration algorithm does not necessarily converge faster than the
value iteration algorithm, but the simplified Bellman operator is (much) easier and
faster to compute than the standard one. One could consider modified policy iteration
as a version of value iteration where the optimal actions are “cached” periodically
instead of recalculating them at each iteration.

5

Exercise 2 Crying Baby Problem
To earn some money you have decided to do babysitting. Tonight you will take care of a 9
months old baby. His parents asked you to feed him when he is hungry. Because you are a
super-babysitter you know from your experience that the probability of the baby crying when he
is hungry is equal to 0.8 and to cry when he is not hungry is equal to 0.1. The cost of feeding the
baby is equal to 5 $ whereas if you don’t feed him while he is hungry it costs you 10 $ (because
the parent will be upset and will reduce your pay). You will have many things to do tonight
and so you decide to optimize your time by just checking every hour whether the baby is crying.
Between two intervals of time you assume that the baby has a probability of 0.2 to get hungry.
You can also assume that the baby has a uniform probability of being hungry when you start
your babysitting.

1. Draw the dynamic Bayesian network as well as the conditional probability tables associated
with your babysitting of tonight.

Let Ht ∈ {0, 1} indicate whether the baby is hungry at time t, Ct ∈ {0, 1} the baby is
crying at time t and Ft ∈ {0, 1} the fact that you fed the baby at time t. Your cost is
Rt ∈ {0,−5,−10}.

Ht

Rt

FtCt

Ht+1

Ht Ft P (Ct = 1|Ht) P (Ht+1 = 1|Ht, Ft) Rt(Ht, Ft)

0 0 0.1 0.2 0
1 0 0.8 1 -10
0 1 - 0 -5
1 1 - 0 -5

For completeness we also have to define the prior P (H0 = 1) = 0.5. Note that Rt is a
deterministic function of Ht and Ft instead of a distribution.

2. Give the sequence of belief states if you assume the sequence of observation-action pairs
(0, 0), (1, 1), (0, 0), (0, 0).

In this problem, the environment is only partially observable (POMDP). You, the agent,
does not know the current state s = Ht. Instead, you collect an observation e = Ct through
a sensor model P (e|s) which allows to reason about the unknown state s and to take an
informed action a = Ft.

If b is the current belief state (a distribution over the state space S) and the agent does an
action a and observes e′, then

b′(s′) =
∑

s

P (s′|s, a, e′)b(s)

= αP (e′|s′)
∑

s

P (s′|s, a)b(s)

6

is the next belief state. Within the formulation of our problem, this gives

bt+1(ht+1) = αP (ct+1|ht+1)
∑
ht

P (ht+1|ht, ft)bt(ht),

with the initial belief

b0 = P (H0|c0)
= αP (c0|H0)P (H0)

Then, knowing from the statement that c0:3 = f0:3 = (0, 1, 0, 0), we have

b0 = α0

(
0.9 0
0 0.2

)(
0.5
0.5

)
≈
(

0.8181
0.1819

)

b1 = α1

(
0.1 0
0 0.8

)(
0.8 0
0.2 1

)
b0 ≈

(
0.1915
0.8085

)

b2 = α2

(
0.9 0
0 0.2

)(
1 1
0 0

)
b1 =

(
1
0

)

b3 = α3

(
0.9 0
0 0.2

)(
0.8 0
0.2 1

)
b2 ≈

(
0.9474
0.0526

)
.

3. From the sequence of belief states, determine the sequence of expected rewards.

The expected reward of a belief state b is defined as

ρ(b) =
∑

s

b(s)R(s).

In our case, the expected reward also depend on the action, that is

ρt =
∑
ht

Rt(ht, ft)b(ht) = Rt(Ht, ft)T bt.

Then, by substitution,

ρ0 =
(
0 −10

)
b0 ≈ −1.819

ρ1 =
(
−5 −5

)
b1 = −5

ρ2 =
(
0 −10

)
b2 = 0

ρ3 =
(
0 −10

)
b3 ≈ −0.526.

7

Exercise 3 Pursuit Evasion (UC Berkeley CS188, Spring 2014)
Pacman is trapped in the following 2 by 2 maze with a hungry ghost.
When it is his turn to move, Pacman must move one step horizontally
or vertically to a neighboring square. When it is the ghost’s turn, he
must also move one step horizontally or vertically. The ghost and
Pacman alternate moves. After every move (by either the ghost or
Pacman), if Pacman and the ghost occupy the same square, Pacman is
eaten and receive utility −100. Otherwise, he receives utility of 1. The
ghost attempts to minimize the utility that Pacman receives. Pacman
makes the first move. The game is not guaranteed to terminate.
For example, with a discount factor of γ = 1, if Pacman moves right, ghost moves down, then
Pacman moves left, Pacman earns a reward of 1 initially (R(s0)) and after the two first moves
and −100 after the last move, for a total utility of −97.

1. Assume a discount factor γ = 0.5, where the discount factor is applied once every time
either Pacman or the ghost moves. What is the Minimax value of the complete (infinite)
game?

If we assume the game starts from the displayed state s0, Pacman has always an action to
get out of reach of the ghost. Hence, if Pacman is optimal, which is true by definition in
Minimax, he will never get eaten. Therefore, we can compute the initial state value

V (s0) =
∞∑

t=0
γt R(st)︸ ︷︷ ︸

1

= lim
t→∞

1− γt+1

1− γ
= 1

1− γ
= 2,

without actually building the (infinite) Minimax tree.

2. Why are the value/policy iteration algorithms superior to Minimax for solving this game?

If γ < 1, we know that the value/policy iteration algorithms converge toward a fixed point,
even if the game does not terminate. Conversely, Minimax is not guaranteed to terminate
due to its recursivity.

This game is similar to an MDP because rewards are earned at every timestep. However, it is
also an adversarial game involving decisions by two agents. Let s be the state (e.g. the positions
of Pacman and the ghost and who is playing) and let A(s) be the set of actions available to the
player in state s. Let s′ = T (s, a) denote the successor of a state s resulting from the action a.
Finally, let R(s) denote the utility received after moving to state s.

4. Write down an expression (analogous to Bellman equation) for V (s), the value of the
current state if it is Pacman’s turn.

V (s) = R(s) + γ max
a∈A(s)

[
R(T (s, a)) + γ min

a′∈A(T (s,a))
V (T (T (s, a), a′))

]

8

Part II

Reinforcement learning

Exercise 4 Q-learning
An agent is in an unknown environment where there are three states {A, B, C} and two ac-
tions {0, 1}. We are given the following tuples (s, a, r, s′), generated by taking actions in the
environment.

s a r s′

A 0 +2 A

C 1 −2 A

B 1 +1 B

A 0 −1 B

B 1 −2 C

C 0 +4 B

B 0 +1 A

Assuming a discount factor γ = 0.5 and a learning rate α = 0.75,

1. Apply the Q-learning algorithm to obtain state-action-value Q(s, a) estimates. Estimates
are initialized to 0.

As seen in the previous exercise, given trial trajectories of some policy π, it is possible to
estimate its expected utility V π even without knowing the transition model P (s′|s, a) or
the reward function R(s) of the environment. However, estimating V π only evaluates the
quality of π, but does not describe how to improve it.

By definition, the optimal policy π∗ is the one that maximizes the expect utility of the
state s, i.e.

π∗(s) = arg max
a

∑
s′

P (s′|s, a)V (s′)

where V (s) = maxπ V π(s) is the state-value of s. Unfortunately, even if we knew V , we
could not find the optimal actions without knowing the transition model. However, if we
knew the state-action-value Q(s, a) of taking action a in state s, we would be able to select
the optimal action

π∗(s) = arg max
a

Q(s, a),

where

Q(s, a) = R(s) + γ
∑
s′

P (s′|s, a)V (s′)

= R(s) + γ
∑
s′

P (s′|s, a) max
a′

Q(s′, a′)

since V (s) = maxa Q(s, a). Fortunately, state-action-values Q(s, a) can be learned in a
model-free fashion using the Q-learning algorithm. Similarly to temporal-difference learning,

9

in Q-learning, we perform stochastic gradient descent updates

Q̂(s, a)← Q̂(s, a)− α

(
Q̂(s, a)− r − γ max

a′
Q̂(s′, a′)

)
← (1− α)Q̂(s, a) + α

(
r + γ max

a′
Q̂(s′, a′)

)
from observed tuples (s, r, a, s′).

In our case, the sequence of updates would be

Q̂(A, 0)← (1− α)Q̂(A, 0) + α
(
2 + γ max{Q̂(A, 0), Q̂(A, 1)}

)
= 1

40 + 3
4(2 + 1

20) = +3
2

Q̂(C, 1)← (1− α)Q̂(C, 1) + α
(
−2 + γ max{Q̂(A, 0), Q̂(A, 1)}

)
= 1

40 + 3
4(−2 + 1

2
3
2) = −15

16
Q̂(B, 1)← (1− α)Q̂(B, 1) + α

(
2 + γ max{Q̂(B, 0), Q̂(B, 1)}

)
= 1

40 + 3
4(1 + 1

20) = +3
4

Q̂(A, 0)← (1− α)Q̂(A, 0) + α
(
−1 + γ max{Q̂(B, 0), Q̂(B, 1)}

)
= 1

4
3
2 + 3

4(−1 + 1
2

3
4) = −3

32
Q̂(B, 1)← . . .

It should be noted that, as for TD learning, we are not limited to perform only one update
for each tuple. Reusing tuples several times (in other orders) is a good way to reach
convergence faster while generating less trials.

2. We now switch to a feature-based estimator Q̂(s, a) = w0 +w1f1(s, a), with f1(s, a) = 2a−1.
Starting from weights w0 = w1 = 0, update the weights according to the approximate
Q-learning algorithm.

We would like our estimates Q̂(s, a) to satisfy the Bellman equation, i.e. to minimize

L = E
s′|s,a

[(
R(s) + γ max

a′
Q̂(s′, a′)− Q̂(s, a)

)2
]
.

To reach this objective we follow the opposite of its gradient

∇wL = 2 E
s′|s,a

[(
Q̂(s, a)−R(s)− γ max

a′
Q̂(s′, a′)

)
∇wQ̂(s, a)

]
with respect to the weights1 w of Q̂(s, a). Once again, due to the expectation, we are forced
to use a stochastic approximation of the gradient from observed tuples (s, a, r, s′) and to
update the weights as

w ← w − α

(
Q̂(s, a)− r − γ max

a′
Q̂(s′, a′)

)
∇wQ̂(s, a),

where α is the learning rate. In our case,

∇wQ̂(s, a) =
(

∂w0

∂w1

)
(w0 + w1f1(s, a)) =

(
1

f1(s, a)

)
=
(

1
2a− 1

)
and the two first weight updates would be

w ← w − α
(
Q̂(A, 0)− 2− γ max{Q̂(A, 0), Q̂(A, 1)}

)
∇wQ̂(A, 0)

←
(

0
0

)
− 3

4

(
−2− 1

2 max{0, 0}
)(1
−1

)
=
(

+3
2

−3
2

)
w ← w − α

(
Q̂(C, 1) + 2− γ max{Q̂(A, 0), Q̂(A, 1)}

)
∇wQ̂(C, 1)

←
(

+3
2

−3
2

)
− 3

4

(
2− 1

2 max{0, 3}
)(1

1

)
=
(

+9
8

−15
8

)
.

10

Exercise 5 Passive RL

1 2 3

1

2

3

−8 +3

−6 −1 +5

Consider the grid-world given above and an agent who is trying to learn the optimal policy. The
agent starts from the bottom-left corner and can take the actions north (N), south (S), west
(W) and east (E). Rewards are only awarded for reaching the terminal (shaded) states. You
observe the following trials, whose trajectories are sequences of tuples (si

t, ri
t, ai

t, si
t+1).

t Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

0 (1, 1), 0, N, (1, 2) (1, 1), 0, N, (1, 2) (1, 1), 0, N, (1, 2) (1, 1), 0, N, (1, 2) (1, 1), 0, N, (1, 2)
1 (1, 2), 0, E, (2, 2) (1, 2), 0, E, (2, 2) (1, 2), 0, E, (2, 2) (1, 2), 0, E, (2, 2) (1, 2), 0, E, (2, 2)
2 (2, 2), 0, N, (2, 3) (2, 2), 0, E, (3, 2) (2, 2), 0, S, (2, 1) (2, 2), 0, E, (3, 2) (2, 2), 0, E, (3, 2)
3 (2, 3),−1,∅,∅ (3, 2), 0, N, (3, 3) (2, 1),−8,∅,∅ (3, 2), 0, W, (2, 2) (3, 2), 0, S, (3, 1)
4 (3, 3), +5,∅,∅ (2, 2), 0, N, (2, 3) (3, 1), +3,∅,∅
5 (2, 3),−1,∅,∅

Assuming a discount factor γ = 1,

1. Perform direct utility estimation of the expected utilities V π(s), given the four first trials.

In this setting, the transition model P (s′|s, a) and the reward function R(s) are unknown.
We wish to learn the expected utility V π of the policy π without modeling the environment,
i.e. without building approximates P̂ (s′|s, a) and R̂(s). The principle of direct utility
estimation is to approximate V π(s) by the average utility V̂ (s) of the state s within all
trial trajectories, i.e.

V̂ (s) = 1
N(s)

∑
(i,j)∈I(s)

∞∑
t=0

γtri
j+t ≈ V π(s) = E

[∞∑
t=0

γtR(st)
]∣∣∣∣∣

s0=s

where I(s) = {(i, j) : si
j = s} indexes the occurrences of s and N(s) = |I(s)| is the number

of occurrences of s. For examples, in our case and excluding the fifth trial,

I((1, 1)) = {(1, 0), (2, 0), (3, 0), (4, 0)}

V̂ ((1, 1)) ≈ 1
4
(
−1 γ3 + 5 γ4 − 8 γ3 − 1 γ5

)
= −5

4
I((2, 2)) = {(1, 2), (2, 2), (3, 2), (4, 2), (4, 4)}

V̂ ((2, 2)) ≈ 1
5
(
−1 γ1 + 5 γ2 − 8 γ1 − 1 γ3 − 1 γ1

)
= −6

5
I((2, 3)) = {(1, 3), (4, 5)}

V̂ ((2, 3)) ≈ 1
2
(
−1 γ0 − 1 γ0

)
= −1.

1It should be noted that the target R(s) + γ maxa′ Q̂(s′, a′) should not affected by the gradient operation as
it is considered constant in the objective. In practice, this is not true as modifying the weights in a parametric
function Q̂ does so for all state-action pairs (s, a) at once. This generally makes the approximate Q-learning
algorithm very unstable.

11

Importantly, since the agent hasn’t reached the states (1, 3) and (3, 3) yet, it is not possible
to estimate their expected utility. Instead, we assume a default value of 0.

1 2 3

1

2

3

−5
4 −8 0

−5
4

−6
5 +2

0 −1 +5

2. Update the estimated expected utilities with respect to the fifth trial using temporal-
difference learning. Assume a learning rate α = 0.5.

Direct utility estimation misses the fact that the expected utilities for different states are
not independent, since they obey the Bellman equation for a fixed policy

V π(s) = R(s) + γ
∑
s′

P (s′|s, π(s))V π(s′).

Then, we would like our estimates V̂ (s) to verify the Bellman equation, i.e. to minimize

L = E
s′|s

[(
R(s) + γV̂ (s′)− V̂ (s)

)2
]
.

One way to reach this objective is to follow the opposite of its gradient

∇L = 2 E
s′|s

[
V̂ (s)−R(s)− γV̂ (s′)

]
with respect to V̂ (s), i.e. to perform gradient descent. Unfortunately, due to the expectation,
we don’t have access to the true gradient. Instead, we use a stochastic approximation of
the gradient from observed2 tuples (s, r, a, s′) and update V̂ (s) as

V̂ (s)← V̂ (s)− α
(
V̂ (s)− r − γV̂ (s′)

)
← (1− α)V̂ (s) + α

(
r + γV̂ (s′)

)
where α is the learning rate. For a fixed learning rate, the average of V̂ (s) converge
towards (oscillates around) the true expected utility V π(s). For a (slowly) decreasing
learning rate, V̂ (s) itself converges to V π(s). For historical reasons, this algorithm is called
temporal-difference (TD) learning.

Following the trajectory of the fifth trial, we perform the updates

V π((1, 1))← (1− α)V π((1, 1)) + α(0 + γV π((1, 2))) = 1
2
−5
4 + 1

2
−5
4 = −5

4
V π((1, 2))← (1− α)V π((1, 2)) + α(0 + γV π((2, 2))) = 1

2
−5
4 + 1

2
−6
5 = −49

40
V π((2, 2))← (1− α)V π((2, 2)) + α(0 + γV π((3, 2))) = 1

2
−6
5 + 1

22 = +4
10

V π((3, 2))← (1− α)V π((3, 2)) + α(0 + γV π((3, 1))) = 1
22 + 1

20 = +1

V π((3, 1))← (1− α)V π((3, 1)) + α(3 + 0) = 1
20 + 1

23 = +3
2 .

2We are not limited to perform only one update for each tuple (s, r, a, s′). Indeed, as we assume the policy to
be stationary, past trials are as likely to happen again as more recent ones. Therefore, reusing tuples several times
(in other orders) is a good way to improve estimates while generating less trials.

12

1 2 3

1

2

3

−5
4 −8 +3

2

−49
40

+4
10 +1

0 −1 +5

Exercise 6 Football
ULiège’s football team is playing against UCL’s team next week. With a lot of losses this season,
Liège needs to improve their attack strategy to win the game and increase their popularity.
Luckily, the team captain follows INFO8006 and knows how to model the attack as a Markov
Decision Process. The captain considers four states close (C), away (A), fail (F), and goal (G),
and two actions pass (P) and shoot (S). Although the transition probabilities are unsure, the
possible transitions (s, a, s′) are known. To each transition is associated an increase/decrease of
the team’s popularity.

s a s′ R(s, a, s′)

C P C +1
C P A −1
C P F −2
C S C +3
C S F −5
C S G +10

A P C +2
A P A 0
A P F −3
A S C +3
A S F −10
A S G +20

The current strategy of the team is to always shoot. Last match, they had several attack
opportunities, resulting in the following actions.

s C C C C A A A A
a S S S S S S S S
s′ G C G F F C F F

Assuming a discount factor γ = 0.75 and a learning rate α = 0.25,

1. Build an estimator of the transition model P (s′|s, a) and, from it, determine the expected
utility V π of the team’s current policy π. Given the previous table, we can estimate the
transition probabilities for s ∈ {C, A} and a = S.

We can now determine the expected utility V π of the team’s current policy π(s) = S using
the following Bellman operator

V π
i+1(s) =

∑
s′

P (s′|s, π(s))
[
R(s, π(s), s′) + γV π

i (s′)
]
,

13

s a P (s′|s, a)
C A F G

C S 0.25 0 0.25 0.5
A S 0.25 0 0.75 0

with V π
0 (s) = 0 for all state s. Because the states Fand Gare terminal, their expected utility

remains constant and we only have to update Cand A. For the first iteration,

V π
1 (C) =

∑
s′

P (s′|C, S)
[
R(C, S, s′) + γV π

0 (s′)
]

= 0.25(3 + γ 0) + 0.25(−5 + γ 0) + 0.5(10 + γ 0) = 4.5

and

V π
1 (A) =

∑
s′

P (s′|A, S)
[
R(A, S, s′) + γV π

0 (s′)
]

= 0.25(3 + γ 0) + 0.75(−10 + γ 0) = −6.75.

We repeat the same procedure until V π
i+1(s) ≈ V π

i (s) for all state s.

s C A F G

V π
0 (s) 0 0 0 0

V π
1 (s) 4.5 -6.75 0 0

V π
2 (s) 5.3437 −5.9063 0 0

V π
3 (s) 5.5019 −5.7480 0 0

V π
4 (s) 5.5316 −5.7183 0 0

...
...

...
...

...
V π

8 (s) 5.5385 −5.7115 0 0

The captain found the tapes of the previous season where they had much more success. Together
with the team, the captain selects the following instructive actions.

s C C A A C A A C
a S S S P P P S P
s′ G C F C C C F F

2. Given the selected tuples, apply the Q-learning algorithm to obtain state-action-value
Q(s, a) estimates. Estimates are initialized to 0.

In Q-learning, the state-action-value Q(s, a) estimates are updated following

Q(s, a)← Q(s, a)− α

(
Q(s, a)− r − γ max

a′
Q(s′, a′)

)
← (1− α)Q(s, a) + α

(
r + γ max

a′
Q(s′, a′)

)
for observed tuples (s, r, a, s′). In our case, we have a list a 16 (8 + 8) tuples (s, a, s′) and
we have access to the reward function R(s, a, s′). Using the tuples in arbitrary order, we

14

have

Q(C, S)← (1− α)Q(C, S) + α

(
R(C, S, G) + γ max

a′
Q(G, a′)

)
← 0.75× 0 + 0.25(10 + 0) = 2.5

Q(C, S)← (1− α)Q(C, S) + α

(
R(C, S, C) + γ max

a′
Q(C, a′)

)
← 0.75× 2.5 + 0.25(3 + 0.75 max{2.5, 0}) = 3.094

Q(A, S)← (1− α)Q(A, S) + α

(
R(A, S, F) + γ max

a′
Q(F, a′)

)
← 0.75× 0 + 0.25(−10 + 0) = −2.5

Q(A, P)← (1− α)Q(A, P) + α

(
R(A, P, C) + γ max

a′
Q(C, a′)

)
← 0.75× 0 + 0.25(2 + 0.75 max{3.094, 0}) = 4.320

Q(C, P)← . . .

3. Determine the optimal policy according to the state-action-value estimates.

π(s) =
{

S if s = C
P if s = A

15

Supplementary exercises

Exercise 7 (AIMA, Ex 16.15)
Consider a student, Sam, who has the choice to buy or not buy a textbook for a course. We’ll
model this as a decision problem with one Boolean decision node, B, indicating whether the agent
chooses to buy the book, and two Boolean chance nodes, M , indicating whether the student
has mastered the material of the course, and F , indicating whether the student fails the course.
There is also a utility node, U . Sam has an additive utility function: 0 for not buying the book
and −100 $ for buying it; and 0 for failing the course and 2000 $ for passing it. Sam’s conditional
probability estimates are as follows:

B M P (M |B) P (F = 1|B, M)

0 0 0.3 0.7
1 0 0.1 0.5
0 1 0.7 0.2
1 1 0.9 0.1

1. Draw the decision network for this problem.

2. Compute the expected utility of buying the book and of not buying it.

3. What should Sam do?

16

Exercise 8 (AIMA, Ex 17.6)
The slides of the course states that the Bellman operator

(BV)(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)V (s′)

is a contraction.

1. Show that, for any two functions f : R 7→ R and g : R 7→ R,

|max
x

f(x)−max
x

g(x)| ≤ max
x
|f(x)− g(x)|.

2. Apply the previous result to prove that the Bellman operator is a contraction of factor γ,
that is

∥(BV)− (BV ′)∥∞ ≤ γ∥V − V ′∥∞.

The infinity norm of a function f : R 7→ R is defined as

∥f∥∞ = sup
x

|f(x)|.

17

Exercise 9 (AIMA, Ex 17.8)
Consider the 3× 3 world shown in Figure ??. The transition model is the same as in the 4× 3
??: 80 % of the time the agent goes in the direction it selects; the rest of the time it moves at
right angles to the intended direction.

-50 +1 +1 +1 +1 +1 +1 +1

+50 -1 -1 -1 -1 -1 -1 -1

· · ·

· · ·

· · ·

Start

r -1

-1

-1

+10

-1

-1

-1

-1

(a) (b)

Figure 1. (a) 3× 3 world for ??. The reward for each state is indicated. The upper right square
is a terminal state. (b) 101× 3 world for ??. The start state has reward 0.

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

Figure 2. (a) A simple 4 × 3 environment that presents the agent with a sequential decision
problem. The two terminal states have reward +1 and −1, respectively, and all other states have
a reward of −0.04. (b) Illustration of the transition model of the environment: the “intended”
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles to
the intended direction. A collision with a wall results in no movement.

Implement value iteration for this world for each value of r below. Use discounted rewards with
a discount factor γ = 0.99. Show the policy obtained in each case. Explain intuitively why the
value of r leads to each policy.

1. r = −100

2. r = −3

3. r = 0

4. r = +3

18

Exercise 10 (AIMA, Ex 17.9)
Consider the 101 × 3 world shown in Figure ??. In the start state the agent has a choice of
two deterministic actions, up or down, but in the other states the agent has one deterministic
action, right. Assuming a discounted reward function, compute the utility of each action as a
function of γ. For what values of the discount factor γ should the agent choose up and for which
down?

This simple example actually reflects many real-world situations in which one must weigh the value of an
immediate action versus the potential long-term consequences, such as choosing to dump pollutants into a lake.

19

Exercise 11 (AIMA, Ex 17.10)
Consider an undiscounted MDP having three states, (1, 2, 3), with rewards −1, −2, 0, respectively.
State 3 is a terminal state. In states 1 and 2 there are two possible actions: a and b. The
transition model is as follows:

• In state 1, action a moves the agent to state 2 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In state 2, action a moves the agent to state 1 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In either state 1 or state 2, action b moves the agent to state 3 with probability 0.1 and
makes the agent stay put with probability 0.9.

Answer the following questions:

1. What can be determined qualitatively about the optimal policy in states 1 and 2?

2. Apply policy iteration, showing each step in full, to determine the optimal policy and the
values of states 1 and 2. Assume that the initial policy has action b in both states.

3. What happens to policy iteration if the initial policy has action a in both states? Does
discounting help? Does the optimal policy depend on the discount factor?

20

Exercise 12 (AIMA, Ex 17.19)
A Dutch auction is similar to an English auction, but rather than starting the bidding at a
low price and increasing, the seller starts at a high price and gradually lowers the price until
some buyer is willing to accept that price. If multiple bidders accept the price, one is arbitrarily
chosen as the winner. More formally, the seller begins with a price p and gradually lowers p by
increments of d until at least one buyer accepts the price.

Assuming all bidders act rationally, is it true that for arbitrarily small d, a Dutch auction will
always result in the bidder with the highest value for the item obtaining the item? If so, show
mathematically why. If not, explain how it may be possible for the bidder with highest value for
the item not to obtain it.

21

Exercise 13 (AIMA, Ex 17.21)
Teams in the National Hockey League historically received 2 points for winning a game and 0
for losing. If the game is tied, an overtime period is played; if nobody wins in overtime, the
game is a tie and each team gets 1 point. But league officials felt that teams were playing too
conservatively in overtime (to avoid a loss), and it would be more exciting if overtime produced
a winner. So in 1999 the officials experimented in mechanism design: the rules were changed,
giving a team that loses in overtime 1 point, not 0. It is still 2 points for a win and 1 for a
tie.

1. Was hockey a zero-sum game before the rule change? After?

2. Suppose that at a certain time t in a game, the home team has probability p of winning in
regulation time, probability 0.78− p of losing, and probability 0.22 of going into overtime,
where they have probability q of winning, 0.9− q of losing, and 0.1 of tying. Give equations
for the expected value for the home and visiting teams.

3. Imagine that it were legal and ethical for the two teams to enter into a pact where they
agree that they will skate to a tie in regulation time, and then both try in earnest to win in
overtime. Under what conditions, in terms of p and q, would it be rational for both teams
to agree to this pact?

4. Some experts report that since the rule change, the percentage of games with a winner in
overtime went up 18.2 %, as desired, but the percentage of overtime games also went up
3.6 %. What does that suggest about possible collusion or conservative play after the rule
change?

22

Quiz
Which of the following is true? In Markov Decision Processes, ...

□ the closer the discount factor γ to 0, the higher the utility of future rewards.

□ the closer the discount factor γ to 0, the longer Value Iteration may take to converge.

□ the closer the discount factor γ to 1, the greedier the optimal agent.

■ the closer the discount factor γ to 1, the longer Value Iteration may take to converge.

Q-Learning ...

□ is a model-based reinforcement learning algorithm.

□ is an on-policy reinforcement learning algorithm.

□ converges to an optimal policy, but only when acting optimally.

■ requires a random exploration strategy to converge to an optimal policy.

Assume that we run ϵ-greedy Q-learning until convergence. What is the optimal policy π∗ we
obtain for an arbitrary state s?

□ π∗(s) = arg maxs V (s)

□ π∗(s) =
{

arg maxa Q(s, a) with probability 1− ϵ

random action with probability ϵ

■ π∗(s) = arg maxa Q(s, a)

□ π∗(s) = arg maxs Q(s, a)

Let us consider a robot wandering around at the Montefiore Institute. Which of the following is
true?

■ The robot and its environment can be modeled as a partially observable MDP.

□ The Kalman filter can be used for determining accurately its past trajectory in the building.

□ A convolutional neural network would be too large to fit in the robot’s memory.

□ Value iteration (with an admissible heuristic) can be used for decoding the speech of its
visitors.

The Bellman equations Q(s, a) = R(s) + γ
∑

s′ P (s′|s, a) maxa′ Q(s′, a′) form a system of n
non-linear equations with as many unknowns. Which of the following is true?

□ n is the size of the action space A.

□ n is the size of the state space S.

■ n is the size of the state-action space S ×A.

□ n is the sum of the sizes of the action and state spaces.

In DQN (Mnih et al, 2015), a reinforcement learning agent is trained to ...

□ to classify images.

□ to control a robot in a simulated environment.

■ to play Atari video games.

□ to play the game of Go.

23

In DQN (Mnih et al, 2015), the Q-table is approximated with ...

□ a hash table.

□ a transposition table.

□ a linear regression model.

■ a convolutional neural network.

24

