
Introduction to Artificial Intelligence (INFO8006)
Exercise session 6

Multilayer perceptron

For an input vector x ∈ Rd and activation function σ(.), a MLP with L layers can be
written as

h0 = x
h1 = σ(WT

1 h0 + b1)
...

hL = σ(WT
LhL−1 + bL)

y = hL

with hl ∈ Rql defined as the the hidden vector, Wl ∈ Rql−1×ql the weight matrix and
bl ∈ Rql the bias vector of the l-th layer.

Training loop

For a given input-output training pair (x, y), a neural network Φθ(.) parameterized by θ, a
loss function L(.) and a learning rate λ:

1. Compute all intermediate values in the network for the given input x up to the output
prediction ŷ = Φθ(x). This is known as the forward pass.

2. Compute the symbolic gradient of the loss w.r.t. every parameters gi(.) = ∂L
∂θi

using
the chain rule.

3. Evaluate the loss for your training point as L(y, ŷ).
4. Backpropagate the loss and the activations through the network to compute the

gradient values gi. This is known as the backward pass.
5. Update every parameter using their gradient as

θi ← θi − λgi.

Universal approximation theorem

The universal approximation theorem states that a single-hidden-layer network with a finite
number of hidden units can approximate any continuous function on a compact subset of
Rd to arbitrary accuracy.

In session exercices: Ex. 1, Ex. 2

1



Exercise 1 Escape game (January 2022)
A new virtual escape game came out, and you decide to play it. You arrive in a 5× 5 grid world
where each cell (x, y) is a room with doors leading to the adjacent rooms. The game’s goal is to
reach the exit room as fast as possible, but its position is unknown. Furthermore, some regions
of the world are full of riddles, and crossing rooms in these regions takes longer. Fortunately, a
leaderboard with the players’ best times is provided, starting from a few different rooms. Due to
rounding errors, you assume that the best times reported in the leaderboard are measurements
affected by additive Gaussian noise N (0, 1).

i Starting room Measured best time

1 (4, 5) 2.0
2 (5, 3) 3.5
3 (3, 3) 4.5
4 (4, 1) 7.0
5 (1, 2) 8.5

From the leaderboard, you wish to learn a heuristic approximating the best time to get to the
exit, starting from room (x, y). You decide to use a small neural network as approximator,
described by the following parametric function,

h(x, y; ϕ) = ReLU(xw1 + yw2 + w3) + ReLU(xw4 + yw5 + w6)
ReLU(x) = max(x, 0),

where ϕ = (w1, w2, w3, w4, w5, w6) is the set of parameters/weights of the neural network.

1. Among the following sets of parameters (A, B or C), which one would you use? Justify
your answer.

Set w1 w2 w3 w4 w5 w6

ϕA −1.5 1 4 1 −1.5 6
ϕB −1 1.5 3 0 −1 4
ϕC −2 0.5 4.5 1.5 0 5

A set of parameters is better than another if it explains the data better, that is if the
likelihood is higher. Our task is to find the set of parameters that maximizes the likelihood
under the assumed probability model. In our case, the data d is the leaderboard and
consists of independent position-time tuples (xi, yi, ti). From the statement, we gather that
the (best) time t is a function of the starting position (x, y), approximated by a neural
network h(x, y; ϕ). We also learn that our time measurements are affected by Gaussian
noise.

ϕMLE = arg max
ϕ

p(d|ϕ)

= arg max
ϕ

5∏
i=1

p(xi, yi, ti|ϕ)

= arg max
ϕ

5∏
i=1

p(ti|xi, yi, ϕ) p(xi, yi)

2



= arg max
ϕ

5∏
i=1
N (t; h(x, y; ϕ), 1)

= arg max
ϕ

5∑
i=1

log
[

1√
2π

exp
(
−(ti − h(xi, yi; ϕ))2

2

)]

= arg min
ϕ

5∑
i=1

(ti − h(xi, yi; ϕ))2

Now that we have an objective L(ϕ) to minimize, we can evaluate it for each of the proposed
sets and select the best one.

L(ϕA) =
5∑

i=1
(ti − h(xi, yi; ϕA))2 = (2.0− 5.5)2 + (3.5− 6.5)2 + · · · = 29.75

L(ϕB) = 35.75
L(ϕC) = 205.25

The best set is ϕA.

2. You now assume a Gaussian prior N (0, 1) on each parameter. Which set of parameters in
the table above would you now choose? Justify your answer.

Now that we hold a prior belief on the parameters, our task is to find the most likely set of
parameters given the data, that is maximum a posteriori (MAP) estimation.

ϕMAP = arg max
ϕ

p(ϕ|d)

= arg max
ϕ

p(d|ϕ)p(ϕ)

= arg max
ϕ

5∏
i=1

p(xi, yi, ti|ϕ)
6∏

j=1
p(wj)

= arg max
ϕ

5∏
i=1
N (t; h(x, y; ϕ), 1)

6∏
j=1
N (wj ; 0, 1)

= arg min
ϕ

5∑
i=1

(ti − h(xi, yi; ϕ))2 +
6∑

j=1
(wj)2

︸ ︷︷ ︸
∥ϕ∥2

Here again, we have an objective L′(ϕ) to minimize, which we evaluate for each of the
proposed sets.

L′(ϕA) = L(ϕA) +
6∑

j=1
(wj)2 = 29.75 + (−1.5)2 + (1)2 + · · · = 88.25

L′(ϕB) = 65.0
L′(ϕC) = 257.0

The best set is ϕB.

3. Discuss the procedure you would implement on a computer to find the optimal set of
parameters, had the table above not been provided.

If the table is not provided, it is intractable to evaluate and compare all possible sets of
parameters. However, we still want to minimize the MLE (or MAP) objective L(ϕ). We

3



can improve a set of parameters ϕ by following the opposite of the objective’s gradient
∇ϕL(ϕ), i.e. performing gradient descent steps

ϕ← ϕ− γ∇ϕL(ϕ),

where γ is the learning rate.

4



Exercise 2 Neural network representations (CS188, Spring 2024)
You are given a number of functions (a-h) of a single variable, x, which are graphed below. For
each network structure proposed afterwards, indicate which functions they are able to represent.
When possible, indicate appropriate values for the parameters.

1. We start with a linear transformation of the scalar input x, weight w, and output y, such
that y = wx.

This network can only represent (a), with w = 2. Since there is no bias term, the line must
pass through the origin.

2. We then introduce a bias term b, such that y = wx + b.

(a) with w = 2 and b = 0, and (b) with w = 4 and b = −5.

3. We now introduce a non-linearity σ(.) into the network. We use the ReLU non-linearity,
which has the form ReLU(x) = max(0, x).

5



With the output coming directly from the ReLU, this cannot produce any values less than
zero. It can produce (c) with w = 2 and b = −5, and (d) with w = −2 and b = −5.

4. Now we consider neural networks with multiple affine transformations, as depicted below.

Applying multiple affine transformations (with no non-linearity in between) is not any
more powerful than a single affine function: w2(w1x + b1) + b2 = w2w1x + w2b1 + b2, so
this is just a affine function with different coefficients. The functions we can represent are
the same as in 1, if we choose w1 = w, w2 = 1, b1 = 0, b2 = b: (a) with w1 = 2, w2 = 1,
b1 = 0, b2 = 0, and (b) with w1 = 4, w2 = 1, b1 = 0, b2 = −5.

5. We now add a ReLU non-linearity to the network between the affine transformations.

(c), (d), and (e). The affine transformation after the ReLU is capable of stretching (or
flipping) and shifting the ReLU output in the vertical dimension. The parameters to
produce these are: (c) with w1 = 2, b1 = −5, w2 = 1, b2 = 0, (d) with w1 = −2, b1 = −5,
w2 = 1, b2 = 0, and (e) with w1 = 1, b1 = −2, w2 = −1, b2 = 1.

6. Now we add another hidden layer to the network, as depicted below. You do not have to
guess parameters values anymore.

(c), (d), (e), and (f). The network can represent all the same functions as Q5 (because
note that we could have w2 = 1 and b2 = 0). In addition it can represent (f): the first

6



ReLU can produce the first flat segment, the affine transformation can flip and shift the
resulting curve, and then the second ReLU can produce the second flat segment (with the
final affine layer not doing anything). Note that (h) cannot be produced since its line has
only one flat segment (and the affine layers can only scale, shift, and flip the graph in the
vertical dimension; they can’t rotate the graph).

7. We’d like to consider using a neural net with just one hidden layer, but larger. Let’s first
consider using just two affine functions, with no nonlinearity in between. You do not have
to guess parameters values anymore.

(a) and (b). With no non-linearity, this reduces to a single affine function (in the same way
as Q4).

8. Now we’ll add a non-linearity between the two affine layers, to produce the neural network
below with a hidden layer of size 2. You do not have to guess parameters values anymore.

All functions except for (g). Note that we can recreate any network from (5) by setting w4
to 0, so this allows us to produce (c), (d) and (e). To produce the rest of the functions, note
that h1 and h2 will be two independent functions with a flat part lying on the x-axis, and
a portion with positive slope. The final layer takes a weighted sum of these two functions.
To produce (a) and (b), the flat portion of one ReLU should start at the point where the
other ends (x = 0 for (a), or x = 1 for (b). The final layer then vertically flips the ReLU
sloping down and adds it to the one sloping up, producing a single sloped line. To produce
(h), the ReLU sloping down should have its flat portion end (at x = 0 before the other’s
flat portion begins (at x = 3). The down-sloping one is again flipped and added to the
up-sloping. To produce (f), both ReLUs should have equal slope, which will cancel to
produce the first flat portion above the x-axis.

7



9. Are there functions that can’t be represented by all proposed networks? If yes, explain
why and what you would need to model them.

Yes, function (g) cannot be modeled. We first see that the function is smooth and repre-
senting it only with few ReLU activations is not enough. We should probably use smoother
activations like SiLU, tanh, ... (see slide 48 of the "Machine learning and neural networks"
lecture).

However, we remember the universal approximation theorem which states that a single-
hidden-layer network with a finite number of hidden units can approximate any continuous
function on a compact subset of Rd to arbitrary accuracy. Then, adding sufficient amount
of hidden units of the 1-layer network of part 8 should be sufficient.

Note that the logarithm function is only defined on R+. If our network is made of activation
functions defined on R, we will never be able to restrict the domain of the learned function
to only real positive. However, you can be as accurate as you want on the desired domain,
but it makes no sense to evaluate your network elsewhere for this problem.

8



Exercise 3 ReLU
For each of the piecewise-linear functions below, write a function y = f(x) as a composition of
sums (+,−), ReLU (ReLU(x) = max(x, 0)) non-linearities, and real parameters (weights and
biases) that exactly matches the function over R.

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

x

y

For example, y = ReLU(x + 2)− ReLU(−2x) is a valid function.

1. y = ReLU(x)− ReLU(−x) + 1

2. y = ReLU(x− 2)− ReLU(−x− 2)

3. y = ReLU(−ReLU(−x + 2) + 4)− 2

4. y = ReLU(−ReLU(2
3x)− ReLU(−1

2x) + 2)

9



Exercise 4 Classification (CS188, Spring 2024)
Consider the following simple neural network for binary classification. Here x is a single real-
valued input feature with an associated class y (0 or 1). There are two weight parameters w1 and
w2, and non-linearity functions g1 and g2. The network will output a value a2 between 0 and 1,
representing the probability of being in class 1. We will be using a loss function L to compare
the prediction a2 with the true class y.

1. Write down the forward pass on this network, writing the output values for each node z1,
a1, z2 and a2 in terms of the node’s input values.

z1 = w1x

a1 = g1(z1) = g1(w1x)
z2 = w2a1 = w2g1(w1x)
a2 = g2(z2) = g2(w2g1(w1x))

2. Derive the arguments of the loss L(a2, y) in terms of the input x, weights wi, and activation
functions gi.

The argument a2 has been derived in the previous question. We have

a2 = g2(w2g1(w1x)).

For the other input y, the latter is given as input of the problem. Indeed, in supervised
learning, we assume access to a training dataset made of input-output pairs {(xi, yi)}N
where yi acts as a target for the network.

3. Using the chain rule, differentiate L w.r.t. w2. Write your expression as a product of partial
derivatives at each node: i.e. the partial derivative of the node’s output with respect to its
inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use
any of those variables.)

∂L
∂w2

= ∂L
∂a2

∂a2
∂z2

∂z2
∂w2

4. Motivate a choice for the output activation function g2 given the nature of the problem.
Motivate also a loss function. Give the expression of the gradients of both functions w.r.t.
to their inputs.

From the statement

(a) we know that we are in a classification problem (specifically, a binary classification),

10



(b) we know that the output a2 should be between 0 and 1 and represents the probability
p(Y = 1 | x).

From (b), we have a2 : R 7→ [0, 1]. A typical choice that fulfill this requirement is the
sigmoid function σ(z) = 1

1 + e−z
. The gradient of the sigmoid w.r.t. its input is

∂σ(z)
∂z

= e−z

(1 + e−z)2 = σ(z)σ(−z) = σ(z)(1− σ(z)).

For the loss function, either we remember the cross-entropy loss seen in the theoretical
lecture, or we compute it from maximum likelihood estimation.

The likelihood of a pair (x, y) can be derived from our model as{
if y = 1 then P (Y = y | x) = NNθ(x)
if y = 0 then P (Y = y | x) = 1−NNθ(x)

where NNθ is the neural network parameterized by θ = [w1, w2]. Denoting NNθ(x) = a2,
the likelihood expression for one pair can be reformulated as

L(x, y; θ) = y log a2 + (1− y) log(1− a2).

Since we want to maximize the likelihood, but minimize the loss, we can set the latter to

L(a2, y) = −y log a2 − (1− y) log(1− a2)

which corresponds to the binary cross-entropy loss. The gradient of the loss w.r.t. a2 is

∂L(a2, y)
∂a2

= − y

a2
+ (1− y)

(1− a2) = a2 − y

a2(1− a2) .

5. We set the loss function to the binary cross-entropy

L(a2, y) = −y log a2 − (1− y) log(1− a2),

and g1 and g2 are both sigmoid functions σ(z) = 1
1+e−z . If you made this choice in the

previous question, use your results to get the expression of ∂L
∂w2

. Otherwise, start by
expressing ∂σ(z)

∂z and ∂L
∂a2

.

We first miss ∂z2
∂w2

which is
∂z2
∂w2

= ∂

∂w2
(w2a1) = a1.

Plugging all the partial derivatives to the expression found in part 3, we have

∂L
∂w2

= a2 − y

a2(1− a2)g2(z2)(1− g2(z2))a1

= a2 − y

a2(1− a2)a2(1− a2)a1

= (a2 − y)a1

11



6. Now use the chain rule to express ∂L
∂w1

as a product of partial derivatives at each node of
interest.

∂L
∂w1

= ∂L
∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w1

7. Finally, write ∂L
∂w1

in terms of x, y, wi, ai, zi.

We first need to compute

∂a1
∂z1

= g1(z1)(1− g1(z1)) = a1(1− a1)

similarly to ∂a2
∂z2

, and
∂z1
∂w1

= ∂

∂w1
(w1x) = x.

Then, we get
∂L
∂w1

= (a2 − y)w2a1(1− a1)x.

8. What is the gradient descent update for w1 with step-size λ in terms of the values computed
above?

w1 ← w1 − λ(a2 − y)w2a1(1− a1)x.

You see here the importance of the forward pass. Iteratively, when receiving the input x,
we compute all the intermediate activations (here, a1 and a2) and the loss (given y). Then,
we propagate backward (from the output to the input) the values following the chain rule
for the gradient of the loss w.r.t. parameters of interest. Finally, we update the parameters
using the computed gradient.

12



Exercise 5 Training loop (INFO8006, January 2024)
Let us consider a neural network f with one hidden layer taking as input a scalar x ∈ R and
producing as output a scalar y = f(x; θ) ∈ R. The neural network is defined as

f(x; θ) = w1ReLU(w2x + w3) + w4ReLU(w5x + w6) + w7ReLU(w8x + w9),

where θ = (w1, w2, w3, w4, w5, w6, w7, w8, w9) is the set of parameters and ReLU(x) = max(x, 0)
is the rectified linear unit function.

1. Draw the computation graph representing the neural network and the flow of information
from inputs to outputs. Your diagram should be a directed graph that follows the following
conventions:

• circled nodes correspond to variables (input, output, parameters or intermediate
variables),

• squared nodes correspond to primitive operations (addition, multiplication, ReLU)
and produce an intermediate variable as output,

• directed edges correspond to the flow of information, from inputs to outputs.

2. For θ = (−1, 1
2 , 0,−4, 1,−2, 4, 1,−5), draw the function y = f(x; θ) for x ∈ [−10, 10].

13



3. Using the data point (x, y) = (10,−15) and the value of θ given above, we want to fine-
tune the parameter w8 of the neural network such that f(x; θ) produces a more accurate
prediction of y.

(a) Evaluate the squared error loss at the data point (x, y) = (10,−15) and the current
value of θ.

f(10, θ) = −17
L(ŷ = −17, y = −15) = (17− 15)2 = 4

(b) Derive an expression for the derivative of the squared error loss with respect to w8.
The loss is

L(ŷ, y) = (ŷ − y)2.

We compute the gradient
∂L
∂w8

= ∂L
∂ŷ

∂ŷ

∂c4

∂c4
∂c3

∂c3
∂c2

∂c2
∂c1

∂c1
∂w8

= 2(ŷ − y)w7
∂c3
∂c2

x.

We need to compute forward activations to compute the gradient value. ∂c3
∂c2

will be 1
if c2 > 0 else 0 by definition of the ReLU. We have

ŷ = −17
y = −15

w7 = 4
x = 10

c2 = w8x + w9 = 5⇒ ∂c3
∂c2

= 1

which gives a gradient equal to −160.

(c) Update the parameter w8 using one step of gradient descent with a learning rate
γ = 0.0005.

The gradient step is given by

w8 ← w8 − γ
∂L
∂w8

which gives an updated w8 equal to 1.08.

14



(d) Verify that the value of the loss function has decreased after the update.

With the updated w8, we have ŷ = −13.8 which gives a loss equal to 1.44. The
previous loss value was 4, we indeed decreased the loss.

15



Exercise 6 Convolution
Represent the convolution x ⊛ u of each of the following signals x

with each of the following convolution kernels u.

16



Exercise 7 Learning to play Pacman (August 2020)
You observe a Grandmaster agent playing Pacman. How can you use the moves you observe to
train your own agent?

1. Describe formally the data you would collect, the inference problem you would consider,
and how you would solve it.

2. How would you design a neural network to control your agent? Define mathematically the
neural network architecture, its inputs, its outputs, its parameters, as well as the loss you
would use to train it.

3. Discuss the expected performance of the resulting agent when (a) the Grandmaster agent
is optimal, and (b) the Grandmaster agent is suboptimal.

17



Quiz
We build a MLP with 2 hidden layers of 32 units, ReLU activations and squared error loss. We
discard the biases from our linear layers. We know that our input is a vector of 2 elements and
the output is a scalar. How much parameters do we have in the network?

□ 1024.

■ 1120.

□ 1185.

□ Another value than the ones proposed above.

We add biases in the network proposed above. What is the number of parameters of the
network?

□ Another value than the ones proposed below.

□ 1089.

■ 1185.

□ 2048.

□ 2240.

We have an image of shape (H, W ), we want to pass it through a layer which reduces each
dimension by a constant K, i.e. produces an output image of shape (H −K, W −K).

□ It can be done with a convolution layer with a kernel (K, K) or a linear layer with weight
matrix (HW, (H −K)(W −K)).

■ It can be done with a convolution layer with a kernel (K + 1, K + 1) or a linear layer with
weight matrix (HW, (H −K)(W −K)).

□ It can be done with a convolution layer with a kernel (K − 1, K − 1) or a linear layer with
weight matrix (HW, KK).

□ It can be done with a convolution layer with a kernel (K + 1, K + 1) or a linear layer with
weight matrix (HW, KK).

From the previous question, we double the number of input pixels by setting the shape of the
input image to (H ′, W ) with H ′ = 2H. The latter implies that the output image should be of
shape (H ′ −K, W −K). If only look at weight parameters (no biases)...

□ The number of parameters of both the linear and convolution layer are doubled.

□ The linear layer will have twice more parameters and the convolution twice less.

■ The linear layer will have twice more parameters and the convolution will not change.

□ Nothing changes neither for the linear layer nor the convolution one.

In deep learning, a layer in a multi-layer perceptron is defined as ...

□ h = σ(WT x + b), where σ is the standard deviation function.

■ h = σ(WT x + b), where σ is an activation function, such as the sigmoid function.

□ h = σ(WT + x− b), where W ∈ Rd×q is matrix of weights.

□ h = σ(WT x + b), where b ∈ Rd is the most likely vector of hidden states given x.

18



Arnaud is trying to perform gradient descent on a function f(x) using the update

xt+1 := xt −
∂f

∂x
(xt).

Is gradient descent guaranteed to converge to the global minimum of f?

□ Yes, since he’s updating using the gradient of x.

□ Yes, but not for the reason above.

□ No, since he is updating updating x in the wrong direction.

■ No, but not for the reason above.

19


	Escape game (January 2022)
	Neural network representations (CS188, Spring 2024)
	ReLU
	Classification (CS188, Spring 2024)
	Training loop (INFO8006, January 2024)
	Convolution
	Learning to play Pacman (August 2020)

