
Introduction to Artificial Intelligence (INFO8006)
Exercise session 5

Inference tasks

For unobserved temporal variables Xt and related observed evidences Et, we define the
task of

• prediction: P (Xt+k | e1:t) for k > 0,
• filtering: P (Xt | e1:t),
• smoothing: P (Xk | e1:t) for 0 ≤ k < t,
• most likely explanation: arg max

x1:t
P (x1:t | e1:t).

A Bayes filter is a dynamic filtering task where a belief state is updated through time as
new evidences are collected. The latter can be decomposed in two recursive phases:

1. Prediction: using the transition model, update your belief about the unobserved
state Xt.

2. Update: given new evidence, update your new state.

Kalman filter

The Kalman filter is a Bayes filter on continuous variables which assumes:
• Gaussian prior
• Linear Gaussian transition model
• Linear Gaussian sensor model

Under those assumptions, both the prediction and update steps leads to Gaussian distribu-
tions. Using Gaussian identities (cfr. previous session), we can derive the parameters µt

and Σt of the Kalman filter p(xt | e1:t) in closed form.
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Hidden Markov models (HMM)

A HMM is a Markov process in which state and evidence are single discrete random variables.

HMM allows to represent model’s components as matrices and vectors, making the
algorithms easy to frame as matrix/vector operations.

Formally, we define
• the prior belief f0 = P (X0),
• the forward message f1:t = P (Xt | e1:t),
• the backward message bk+1:t = P (ek+1:t | Xk),
• the transition matrix T s.t. Tij = P (Xt = j | Xt−1 = i),
• the sensor matrix B s.t. Bij = P (Et = j | Xt = i).

Using those notations, we have

f1:t+1 = αOt+1TT f1:t

bk+1:t = Ok+1bk+2:t

with bt+1:t an all-one vector, α a normalizing constant and Ot a diagonal matrix whose
elements are the column elements of B corresponding to the realization of the evidence et.

Stationary distribution

A distribution is called a stationary distribution if, for t → ∞,

P (Xt) = P (Xt+1).

Specifically, for HMM, the stationary distribution f is a distribution such that

f = TT f .

In session exercices: Ex. 1, Ex. 2
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Exercise 1 Oral exam (January 2023)
You are waiting for an oral exam for which the professor is known to be moody. Some students
have difficult questions while others have easy ones. You learned from your seniors that if a
student has difficult questions, there is a 40% chance that the next student will also have difficult
ones. If a student has easy questions, there is 70% chance that the next student will also have
easy ones. You observe the students that come out of the professor’s office. They either look
happy, neutral or sad. You assume that, if their questions were difficult, there are 20% and 60%
chance that they look respectively happy and sad. If their questions were easy, there are 50%
and 30% chance that they look respectively happy and sad.

1. Define the components of a hidden Markov model (HMM), where the state Xt ∈ {difficult, easy}
is the difficulty of the questions for the t-th student and the evidence Et ∈ {happy, neutral, sad}
is the emotion you observe.

f0 = P (X0) =
(

0.5
0.5

)

T = P (Xt|Xt−1) =
(

0.4 0.6
0.3 0.7

)

B = P (Et|Xt) =
(

0.2 0.2 0.6
0.5 0.2 0.3

)

2. At some point, the professor decides that one in two students will come out of their office
by another exit, which prevents you from observing them. Sketch a Bayesian network
describing this new process.

X0 X1 X2 X3 X4 X5 . . .

E1 E3 E5

3. Express, in terms of the HMM components, the distribution P (Xt|e1:t:2) of the difficulty
for t-th student given your observations e1:t:2 of half of the previous students. Note that,
e1:6:2 = (e1, e3, e5) and e1:7:2 = (e1, e3, e5, e7). Separate the cases where t is even and odd.

Denoting ft = P (Xt|e1:t:2),

f2n = T T f2n−1

f2n+1 = α O2n+1 T T f2n

4. Given the observations e1:3:2 = (e1, e3) = (sad, happy), compute the probability that the
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3rd student has difficult questions.

f1 = α1 O1 T T f0 = α1

(
0.6 0
0 0.3

)(
0.4 0.3
0.6 0.7

)(
0.5
0.5

)
≈
(

0.5185
0.4815

)

f2 = T T f1 =
(

0.4 0.3
0.6 0.7

)(
0.5185
0.4815

)
≈
(

0.3519
0.6481

)

f3 = α3 O3 T T f2 = α3

(
0.2 0
0 0.5

)(
0.4 0.3
0.6 0.7

)(
0.3519
0.6481

)
≈
(

0.1678
0.8322

)

Finally, P (X3 = difficult|e1:3:2) ≈ 0.1678.
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Exercise 2 Umbrella World (AIMA, Section 15.1.1)
You are a security guard stationed at a secret underground installation. You want to know
whether it is raining today, but your only access to the outside world occurs each morning when
you see the director coming in with, or without, an umbrella. For each day t, the evidence is a
single variable Umbrellat ∈ {1, 0}, i.e. whether the umbrella appears or not, and the (hidden)
state is a single variable Raint ∈ {1, 0}, i.e. whether it is raining or not.

You believe that from one day t − 1 to the next t, the chances that the weather stays the same
are 70 %. You also believe that the director brings his umbrella 90 % of the time when it is
raining, and 20 % of the time otherwise.

1. You would like to represent your umbrella world as a Markov model. What formal
assumptions correspond to your beliefs ?

The first belief describes the umbrella world as a first-order Markov process, such that

P (Rt|R1:t−1) = P (Rt|Rt−1),

i.e. Rt is independent from R1:t−2 given Rt−1. The second belief is equivalent to a first-order
sensor Markov assumption, implying that

P (Ut|R1:t, U1:t−1) = P (Ut|Rt).

2. Sketch a Bayesian network structure describing the umbrella world and provide the transition
and sensor models.

Rt−1 P (Rt = 1|Rt−1)

1 0.7
0 0.3

Rt P (Ut = 1|Rt)

1 0.9
0 0.2

This corresponds to the following transition and sensor matrices

T =
(

0.7 0.3
0.3 0.7

)
B =

(
0.9 0.1
0.2 0.8

)
.

3. Express the distributions P (Rt+1|Rt−1), P (Ut|Rt−1) and P (Rt|Rt−1, Ut) in terms of the
transition and sensor models.
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P (Rt+1|Rt−1) =
∑
rt

P (Rt+1|rt)P (rt|Rt−1)

= TT

=
(

0.7 0.3
0.3 0.7

)(
0.7 0.3
0.3 0.7

)
=
(

0.58 0.42
0.42 0.58

)
P (Ut|Rt−1) =

∑
rt

P (Ut|Rt−1, rt)P (rt|Rt−1)

=
∑
rt

P (Ut|rt)P (rt|Rt−1)

= TB

=
(

0.7 0.3
0.3 0.7

)(
0.9 0.1
0.2 0.8

)
=
(

0.69 0.31
0.41 0.59

)

P (Rt|Rt−1, Ut) = P (Ut|Rt−1, Rt)P (Rt|Rt−1)
P (Ut|Rt−1)

= P (Ut|Rt)P (Rt|Rt−1)
P (Ut|Rt−1)

4. Suppose you observe an unending sequence of days on which the umbrella appears. Show
that, as the days go by, the probability of rain on the current day tends monotonically
towards a fixed point. Calculate this fixed point.

We are asked to prove that xt = P (Rt = 1|U1:t = 1) tends monotonically (with respect to
t) towards a fixed point x∗. To do so, we need to find the value of xt, which corresponds to
apply filtering on the Markov model defined by the umbrella world. On this basis, we have

P (Rt|U1:t = 1) = αP (Ut = 1|Rt)
∑
rt−1

P (Rt|rt−1)P (rt−1|U1:t−1 = 1)

= α

(
0.9 0
0 0.2

)(
0.7 0.3
0.3 0.7

)
P (Rt−1|U1:t−1 = 1)

⇔
(

xt

1 − xt

)
= α

(
0.63 0.27
0.06 0.14

)(
xt−1

1 − xt−1

)

= α

(
0.27 + (0.63 − 0.27) xt−1
0.14 + (0.06 − 0.14) xt−1

)

= 1
0.41 + 0.28 xt−1

(
0.27 + 0.36 xt−1
0.14 − 0.08 xt−1

)
.

Then, if there is a fixed point x∗ ∈ [0, 1], it satisfies

x∗ = 0.27 + 0.36 x∗

0.41 + 0.28 x∗

⇔ 0.41 x∗ + 0.28 x∗2 = 0.27 + 0.36 x∗

⇔ 0 = 0.28 x∗2 + 0.05 x∗ − 0.27

⇒ x∗ = −0.05 +
√

0.052 + 4 × 0.27 × 0.28
2 × 0.28 ≈ 0.897.

To show that xt tends monotonically towards x∗, it is sufficient to prove that xt is always
between x∗ and xt−1, i.e.

(x∗ − xt)(xt − xt−1) > 0,
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when xt−1 ̸= x∗, which is left as an exercise to the motivated reader.

5. Now consider forecasting further and further into the future, given t umbrella observations.
Is there a fixed point ? If yes, compute its exact value.

We are asked to forecast the rain probability xk = P (Rt+k = 1|U1:t = 1), i.e. to perform
prediction. We have

P (Rt+k|U1:t = 1) =
∑

rt+k−1

P (Rt+k|rt+k−1)P (rt+k−1|U1:t = 1)

=
(

0.7 0.3
0.3 0.7

)
P (Rt+k−1|U1:t = 1)

⇔
(

xk

1 − xk

)
=
(

0.7 0.3
0.3 0.7

)(
xk−1

1 − xk−1

)
.

By symmetry, we find the fixed point x∗ = 0.5, which highlights the fact that, without new
evidences, uncertainty about the states accumulates.
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Exercise 3 The coins
You are in a room containing 3 precious biased gold coins a, b and c. You inspect the coins and
notice that the coins a, b and c have a head probability of 80 %, 50 % and 20 %, respectively.

Another person enters the room, takes the coins and put them into a bag. They draw a coin
from the bag and tell you that they will repeat 4 times the same routine: hide their hand in the
bag and either keep the current coin with probability 2

3 or replace it by another, then toss it and
show you the result. They proceed and the sequence of results are heads, heads, tail, heads. If
you answer right to the following questions they will give you the coins.

1. Provide a hidden Markov model (HMM) that describes the process.

• The hidden state at time t is Xt ∈ {a, b, c} and represents the tossed coin.

• The evidence at time t is Et ∈ {0, 1} and represents the result (heads or tail) of the
toss. We have e1 = e2 = e4 = 0 and e3 = 1.

• The prior vector
f0 = P (X0) =

(
1
3

1
3

1
3

)T

• The transition matrix

T = P (Xt|Xt−1) =


2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3


• The sensor matrix

B = P (Et|Xt) =

0.8 0.2
0.5 0.5
0.2 0.8


2. What are the probabilities of the last coin given the sequence of evidences?

We are asked to calculate the distribution ft = P (Xt|e1:t) for t = 4. Applying Bayes filter,
we have

P (Xt|e1:t) = αP (et|Xt, e1:t−1)P (Xt|e1:t−1)
= αP (et|Xt, e1:t−1)

∑
xt−1

P (Xt|xt−1, e1:t−1)P (xt−1|e1:t−1)

= αP (et|Xt)
∑
xt−1

P (Xt|xt−1)P (xt−1|e1:t−1)

⇔ ft = α Ot T T ft−1

where Ot = diag(P (et|Xt)) is the observation matrix. By substitution,

O1 = O2 = O4 =

0.8 0 0
0 0.5 0
0 0 0.2

 and O3 =

0.2 0 0
0 0.5 0
0 0 0.8

 .
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Then, to calculate f4, we first need f1, f2 and f3.

f1 = α1 O1 T T f0 = α1

0.8 0 0
0 0.5 0
0 0 0.2




2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3




1
3
1
3
1
3

 = α1


4
15
1
6
1
15

 =


8
15
1
3
2
15


f2 = α2 O2 T T f1 = . . .

f3 = α3 O3 T T f2 = . . .

f4 = α4 O4 T T f3 = · · · ≈
(
0.472 0.374 0.154

)T

3. What are the probabilities of the first coin given the sequence of evidences? And of the
first coin tossed?

We are asked to calculate the distribution P (Xk|e1:t) for t = 4 and k = 0. As k < t this
corresponds to smoothing our belief of the past. We have

P (Xk|e1:t) = αP (Xk, ek+1:t|e1:k)
= αP (ek+1:t|Xk, e1:k)P (Xk|e1:k)
= αP (ek+1:t|Xk)P (Xk|e1:k)

As we already know fk = P (Xk|e1:k), we only need to compute bk = P (ek+1:t|Xk). We
have

P (ek+1:t|Xk) =
∑
xk+1

P (xk+1|Xk)P (ek+1:t|Xk, xk+1)

=
∑
xk+1

P (xk+1|Xk)P (ek+1|xk+1)P (ek+2:t|xk+1)

⇔ bk = T Ok+1 bk+1

where bt = b4 = P (anything|X4) =
(
1 1 1

)T
. Therefore, to calculate b0, we first need

b3, b2 and b1.

b3 = T O4 b4 =


2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3


0.8 0 0

0 0.5 0
0 0 0.2


1

1
1

 =

0.65
0.5
0.35


b2 = T O3 b3 = . . .

b1 = T O2 b2 = . . .

b0 = T O1 b1 = · · · ≈
(
0.076 0.055 0.035

)T

Eventually,

P (X0|e1:4) = αb0 × f0 ≈
(
0.457 0.331 0.212

)T

P (X1|e1:4) = αb1 × f1 ≈
(
0.580 0.329 0.091

)T

4. What is the most likely sequence of tossed coins?

The most likely sequence x∗
1:t given the sequence of evidences e1:t is the one that satisfies

x∗
1:t = arg max

x1:t
P (x1:t|e1:t)
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or, equivalently,

x∗
k = arg max

xk

[
max
x1:k−1

P (x1:k, x∗
k+1:t|e1:t)

]
= arg max

xk

[
max
x1:k−1

αP (x1:k, x∗
k+1:t, ek+1:t|e1:k)

]
= arg max

xk

[
max
x1:k−1

αP (ek+1:t|x1:k, x∗
k+1:t, e1:k)P (x∗

k+1:t|x1:k, e1:k)P (x1:k|e1:k)
]

= arg max
xk

[
max
x1:k−1

αP (ek+1:t|x∗
k+1:t)P (x∗

k+2:t|x∗
k+1)︸ ︷︷ ︸

constant

P (x∗
k+1|xk)P (x1:k|e1:k)

]

= arg max
xk

P (x∗
k+1|xk)

[
max
x1:k−1

P (x1:k|e1:k)
]

= arg max
xk

P (x∗
k+1|xk) mk(xk)

where

mk = max
x1:k−1

P (x1:k−1, Xk|e1:k)

= max
x1:k−1

αP (x1:k−1, Xk, ek|e1:k−1)

= max
x1:k−1

αP (et|x1:k−1, Xt, e1:k−1)P (Xk|x1:k−1, e1:k−1)P (x1:k−1|e1:k−1)

= max
x1:k−1

αP (ek|Xk)P (Xk|xk−1)P (x1:k−1|e1:k−1)

= αP (ek|Xk) max
xk−1

P (Xk|xk−1) max
x1:k−2

P (x1:k−1|e1:k−1)

= αP (ek|Xk) max
xk−1

P (Xk|xk−1) mk−1(xk−1)

and m1 = P (X1|e1) = f1. Therefore, we can iteratively build the vectors m1, m2, . . . , mt

to find the most likely last state

x∗
t = arg max

xt
mt(xt)

and, then, the most likely sequence with

x∗
k = arg max

xk
P (x∗

k+1|xk) mk(xk).
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Exercise 4 Super Spring Ultra Pro Max XXL
The “Foire de Liège” has a new attraction called “Super Spring Ultra Pro Max XXL” which
consists in a ball attached to a spring on a platform. The participants take seat in the ball locked
at some position. The ball is then released and pulled by the spring which makes it oscillate
back and forth. After a few seconds, the ball is stopped by magnetic brakes. You notice that the
final position of the ball is different each time. As the ball is opaque, you wonder if it is possible
for the participants to guess where the ball stopped, given their perception of acceleration.

You more or less remember your Newtonian mechanics class and model the movement of the ball
as a series of transitions

pt = pt−1 + ∆t ṗt−1 + 1
2∆t2 p̈t−1

ṗt = ṗt−1 + ∆t p̈t−1

p̈t = ρwt−1 − κ pt−1 − η ṗt−1

wt ∼ N (αwt−1, σ2
w)

where pt, ṗt and p̈t are respectively the position, velocity and acceleration of the ball at timestep
t, wt is the wind at timestep t, ∆t is the time elapsed between t − 1 and t, ρ is the thrust
coefficient of the wind, κ is the stiffness of the spring, η is the friction coefficient of the platform
and α is the persistence of the wind. You estimate that the ball starts 10.0 ± 0.5 m at the left of
the spring with a negligible speed 0.0 ± 0.1 m s−1 and acceleration 0.0 ± 0.1 m s−2. You assume
that the wind has a stationary distribution. Finally, you assume that the human perception of
acceleration follows an unbiased Gaussian distribution.

1. You wish to predict the state of the ball given the perceptions of a participant. Define the
components of a Kalman filter in this context.

The Kalman filter is a special case of the continuous Bayes filter, which assumes

• a Gaussian prior
p(x0) = N (x0|µ0, Σ0),

• a linear Gaussian transition model

p(xt|xt−1) = N (xt|Fxt−1 + u, Σx)

• and a linear Gaussian sensor model

p(et|xt) = N (et|Hxt + v, Σe).

In a multivariate Gaussian distribution x =
(
x1 x2 . . . xn

)T
∼ N (µ, Σ), the first

argument is the mean vector and the second is the covariance matrix. The mean vector is
the vector of the variable means, i.e. µi = E[xi]. An element Σij of the covariance matrix
is the covariance between the variables xi and xj , i.e. Σij = E[(xi − µi)(xj − µj)]. If xi is
independent from xj , their covariance is null by definition, i.e. Σij = 0. Interestingly, the
diagonal elements Σii are the variable variances V[xi] = E[(xi − µi)2].

In our case, the state Xt is a 4-dimensional vector
(
pt ṗt p̈t wt

)T
and according to the
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provided information, the prior is defined1 by

µ0 =


10
0
0
0

 and Σ0 =


0.52 0 0 0

0 0.12 0 0
0 0 0.12 0
0 0 0 σ2

w
1−α2

 .

Then, our transition model is defined by

F =


1 ∆t 1

2∆t2 0
0 1 ∆t 0

−κ −η 0 ρ

0 0 0 α

 , u =


0
0
0
0

 and Σx =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 σ2

w

 .

It should be noted that only the wind has a non-null variance in Σx, since the transitions
of the position, velocity and acceleration are deterministic.

Concerning the sensor model, the evidence is a perturbed, but unbiased, perception of the
acceleration, that is

et ∼ N (p̈t, σ2
e),

which translates to

H =
(
0 0 1 0

)
, v = 0 and Σe = σ2

e .

2. Express the distribution p(xt|e1:t) with respect to the components defined previously.

This task corresponds exactly to filtering, i.e. inferring the distribution

p(xt|e1:t) = α p(et|xt, e1:t−1) p(xt|e1:t−1)

= α p(et|xt)
ˆ

p(xt, xt−1|e1:t−1) dxt−1.

In the latter expression, the integral corresponds to the marginalization of the joint
distribution

p(xt, xt−1|e1:t−1) = p(xt|xt−1) p(xt−1|e1:t−1).

Because the transition model p(xt|xt−1) is linear Gaussian, if the previous belief p(xt−1|e1:t−1)
is a (multivariate) Gaussian distribution N (µt−1, Σt−1), we have

p

((
xt−1
xt

) ∣∣∣∣∣ e1:t−1

)
= N

((
xt−1
xt

) ∣∣∣∣∣
(

µt−1
Fµt−1 + u

)
,

(
Σt−1 Σt−1F T

FΣt−1 FΣt−1F T + Σx

))

and
p(xt|e1:t−1) = N

(
xt| Fµt−1 + u︸ ︷︷ ︸

µ∗

, FΣt−1F T + Σx︸ ︷︷ ︸
Σ∗

)
.

Similarly, because the sensor model p(et|xt) is linear Gaussian, we have the joint distribution

p

((
xt

et

) ∣∣∣∣∣ e1:t−1

)
= N

((
xt

et

) ∣∣∣∣∣
(

µ∗
Hµ∗ + v

)
,

(
Σ∗ Σ∗HT

HΣ∗ HΣ∗HT + Σe

))
.

1The stationarity of the wind implies that V[w0] = V[w1] = V[αw0 + ∆w] = α2V[w0] + σ2
w, and therefore,

V[w0] = σ2
w

1−α2 .
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Then, from the cheat sheet for Gaussian models (slide 47, lecture 6) we have

p(xt|e1:t) = N
(
xt| µ∗ + K(et − Hµ∗ − v)︸ ︷︷ ︸

µt

, Σ∗ − KHΣ∗︸ ︷︷ ︸
Σt

)

where K = Σ∗HT (HΣ∗HT + Σe)−1 is the Kalman gain matrix. Since the prior p(x0) is
Gaussian by assumption, all beliefs are Gaussian as well, by induction.

3. Represent the transition and sensor models as a dynamic Bayesian network.

pt−1

ṗt−1

p̈t−1

wt−1

pt

ṗt

p̈t

wt

et
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Exercise 5 Robots (UC Berkeley CS188, Fall 2017)
In the near future, autonomous robots will live among us. Therefore, the robots need to know
how to act appropriately in the presence of humans. In this question, we explore a simplified
model of this interaction. We assume that we can observe the robot’s actions at time t, Rt, and
an evidence observation, Et, directly caused by the (hidden) human state, Ht. Robot actions
from the current time-step affect the human state in the next-time step, as illustrated in the
Bayesian network given below.

. . . Ht−1 Ht Ht+1 . . .

. . . Et−1 Et Et+1 . . .

. . . Rt−1 Rt Rt+1 . . .

Assuming discrete random variables and given the probability tables P (H0), P (Et|Ht), P (Rt|Et)
and P (Ht+1|Ht, Rt), your goal is to derive a procedure to maintain a belief P (Ht|e1:t, r1:t) about
the state of the human at time t.

1. Derive an update equation for incorporating a pair of observations (et, rt) to a given belief
state P (Ht).

P (Ht|et, rt) = P (et, rt|Ht)P (Ht)
P (et, rt)

= αP (rt|et)P (et|Ht)P (Ht)
= αP (et|Ht)P (Ht)

2. Derive an update equation for predicting the future state Ht+1 of the human at time t + 1
given a belief state P (Ht|e1:t, r1:t).

P (Ht+1|e1:t, r1:t) =
∑
ht

P (Ht+1, ht|e1:t, r1:t)

=
∑
ht

P (Ht+1|ht, rt)P (ht|e1:t, r1:t)

3. Combine both equations to derive a recursive update equation of the belief state P (Ht|e1:t, r1:t),
as observations are collected and time passes.

P (Ht+1|e1:t+1, r1:t+1) = αP (et+1|Ht+1)P (Ht+1|e1:t, r1:t)
= αP (et+1|Ht+1)

∑
ht

P (Ht+1|ht, rt)P (ht|e1:t, r1:t)
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4. Let us now assume that all variables are continuous. Discuss how you would compute or
approximate the belief state on a computer.

If all variables are continuous, unless the prior, transition model and sensor model are
strictly constrained (e.g. Gaussian), it is not possible to express and update the belief states
in closed form. Instead, we can use approximate filtering algorithms, such as extended
Kalman filters or particle filters.
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Exercise 6 September 2019 (AIMA, Ex 15.13 and 15.14)
A professor wants to know if students are getting enough sleep. Each day, the professor observes
whether the students sleep in class, and whether they have red eyes. The professor has the
following hypotheses:

• The prior probability of getting enough sleep, with no observations, is 0.7.

• The probability of getting enough sleep on night t is 0.8 given that the student got enough
sleep the previous night, and 0.3 otherwise.

• The probability of having red eyes is 0.2 if the student got enough sleep, and 0.7 otherwise.

• The probability of sleeping in class is 0.1 if the student got enough sleep, and 0.3 otherwise.

The professor asks you to answer the following questions:

1. Formulate the environment and hypotheses as a dynamic Bayesian network that the
professor could use to detect sleep deprived students, from a sequence of observations.
Provide the associated probability tables.

2. Reformulate the dynamic Bayesian network as a hidden Markov model that has only a
single observation variable. Give the complete probability tables for the model.

3. For the sequence e1:3 of observations “no red eyes, not sleeping in class”, “red eyes, not sleep-
ing in class” and “red eyes, sleeping in class”, calculate the distributions P (EnoughSleept|e1:t)
and P (EnoughSleept|e1:3) for t ∈ {1, 2, 3}.
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Quiz
The Kalman filter requires the specification of ...

□ a prior P(X0) and a transition model P(Xt+1|xt).

□ a transition model P(Xt+1|xt) and an observation model P(Et|xt).

■ a prior P(X0), a transition model P (Xt+1|xt), and an observation model P (Et|xt).

□ a prior P(X0), a prior P(E0), a transition model P (Xt+1|xt), and an observation model
P (Et|xt).

In filtering, the belief state is updated at each timestep using ...

□ the current belief and the transition model.

□ the current belief, the observation model and the new evidence.

□ the transition model, the observation model and the new evidence.

■ the current belief, the transition model, the observation model and the new evidence.

Let us assume a Markov process with hidden state variables Xt, evidence variables Et, transition
model P(Xt+1|Xt) and sensor model P(Et|Xt). Which of the following is true?

□ The Bayes filter estimates P(X1:t|e1:t).

□ Smoothing consists in computing P(Xt+1|e1:t+1) by pushing the belief state P(Xt|e1:t)
forward through the transition model and then updating this new belief state with the
evidence et+1.

□ The Kalman filter computes P(Xt+k|e1:t) by pushing the belief state P(Xt|e1:t) forward k
times through the transition model.

■ The Viterbi algorithm computes the most likely sequence of state values x1:t given the
evidence e1:t.
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