
Introduction to Artificial Intelligence (INFO8006)
Exercise session 4

Maximum likelihood estimation

Given a set of i.i.d. observations D = {x1, ..., xN }, a set of unknown parameters θ =
[θ1, ..., θK ] and the likelihood function P (xi | θ) of one observation given the parameters,
we derive the likelihood of the parameters for this set of observations as

P (D | θ) =
N∏

i=1
P (xi | θ).

From which we can recover the maximum likelihood estimate θ∗ of the parameters as

θ∗ = argmax
θ

P (D | θ).

This can typically be found by cancelling the derivative of the associated log-likelihood
w.r.t. each parameter

∂LL(D; θ)
∂θk

= 0, ∀k.

Bayesian learning and maximum a posteriori

We can treat parameters as random variables to incorporate uncertainty about their values.
To do so, we have to specify a prior distribution P (θ) over the parameters. When new
observations D are collected, the distribution over parameters can be updated, leading to
the posterior

P (θ | D) ∝ P (D | θ)P (θ).

When the latter is not analytically tractable, we can still compute the maximum a posteriori

θ∗ = argmax
θ

P (θ | D).
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Cheat sheet for Gaussian models

From the joint

p

(
x
y

)
= N

((
a
b

)
,

(
A C

CT B

))
,

the marginal and conditional distributions are given by

p(x) = N (a, A)
p(y) = N (b, B)

p(x | y) = N (a + CB−1(y − b), A − CB−1CT)
p(y | x) = N (b + CTA−1(x − a), B − CTA−1C).

On the other hand, from

p(x) = N (m, P)
p(y | x) = N (Hx + u, R),

we can recover the joint distribution as

p

(
x
y

)
= N

((
m

Hm + u

)
,

(
P PHT

HP HPHT + R

))
,

In session exercises: Ex. 1, Ex. 2
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Exercise 1 Nuclear power plant (AIMA, Ex 14.11)
In your local nuclear power station, there is an alarm that senses when a temperature gauge
exceeds a given threshold. The gauge measures the temperature of the core. Consider the
Boolean variables A (alarm sounds), FA (alarm is faulty), and FG (gauge is faulty) and the
multi-valued nodes G (gauge reading) and T (actual core temperature).

1. Draw a Bayesian network for this domain, given that the gauge is more likely to fail when
the core temperature gets too high.

2. From your network topology, can you conclude T ⊥ FA | FG and T ⊥ FA | FG, A?

3. Suppose there are just two possible actual and measured temperatures: low (l) and high
(h). The probability that the gauge gives the correct temperature is x when it is working,
but y when it is faulty. Give the conditional probability table associated with G.

4. Suppose the alarm is always triggered by high measured temperatures, unless it is faulty,
in which case it never sounds. Give the conditional probability table associated with A.

5. Suppose the gauge is not faulty and the alarm is triggered. Calculate an expression for the
probability that the temperature of the core is too high, in terms of the various conditional
probabilities in the network.
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Exercise 2 Student–TA relationship
The teaching assistant of the course is worried about the time he spends to prepare the exercise
sessions. He wants to investigate the influence of students can have on his schedule. To do so, he
builds the following model

S H

where S is a r.v. denoting the number of students leaving the room between a theoretical lecture
and the practical session that follows, and H is a r.v. representing the number of hours spent to
prepare the next session. He chooses the following relations for each variable

P (S = s) = Poisson(S = s; λ) = λse−λ

s! (1)

H = ωS + H0 + N (0, σ2) (2)

where H0 corresponds to the number of hours the TA should spend per session regarding its
contract and ω is the influence weight of students over the TA.

1. Identify the parameters of the Bayesian network and give the joint log-likelihood of one
pair (si, hi) given the model.

2. The TA collects a set D = {(si, hi)}N
i=1 of independent observations. Derive the maximum

likelihood estimate of the parameters.

3. The TA has just started to collect observations of students leaving the classroom. Being
an adept of the Bayes’ school, he knows that using MLE can lead to overfitting. Hence,
he decides to incorporate uncertainty in his analysis of the parameter λ as he has no
strong knowledge about it. Using a prior λ ∼ Gamma(α, β), what would be the posterior
distribution P (λ | S = {si}N

i=1)?

Hint: Gamma(x | α, β) = 1
Z xα−1e−βx, with Z a normalizing constant.

4. Knowing that the mean, the variance and the mode of Gamma(α, β) are respectively α

β
, α

β2

and α − 1
β

, interpret how they evolve w.r.t. N between the prior and the posterior.
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Exercise 3 Car diagnosis (AIMA, Ex 14.8)
Let be the following Bayesian network describing some features of a car’s electrical system and
engine. Each variable is Boolean, and the true value indicates that the corresponding aspect of
the vehicle is in working order.

Radio

Battery

Ignition Gas

Starts

Moves

1. Extend the network with the Boolean variables IcyWeather and StarterMotor.

2. According to your knowledge of cars, give reasonable conditional probability tables for all
the nodes.

3. How many independent values are contained in the joint probability distribution for eight
Boolean nodes, assuming that no conditional independence relations are known to hold
among them?

4. How many independent probability values do your network tables contain?
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Exercise 4 Gaussian parameter learning with known σ2

You have in your possession a high-tech laser that emits light of intensity µl with great precision.
You want to use it to test a new light-intensity measurement device. You assume that your
measures yi follow a Gaussian distribution N (µy, σ2) with µy ∼ N (µl, σ2

l ) corresponding to the
model of your laser given in the manual. You assume that σ2 is fixed and that you can determine
it.

You have access to Yc a calibration set of C observations and you want to make N new measures
with your device. You want to study how you can reduce your uncertainty about the measures
using Yc.

1. Compute the prior and posterior predictive distributions P (y) and P (y | Yc) if you have
access to one observation, i.e. Yc = {yo}.

2. Looking at you predictive uncertainty, what is the benefit of incorporating Yc?
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Exercise 5 Independence

A

B C

D

E

F

Considering the hereabove Bayesian network, which of the following statements are enforced by
the network structure?

1. P (B, C) = P (B)P (C)

2. P (B, C|A) = P (B|A)P (C|A)

3. P (F, E) = P (F )P (E)

4. P (F |A, D, E) = P (F |A, D)

5. P (B, E) =
∑

a,c,d,f P (a)P (B|a)P (c|a)P (d|B, c)P (E|c)P (f |a, B)

For the same network, use inference by variable elimination to compute P (E|A = 1, B = 1).
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Exercise 6 Pacbaby (UC Berkeley CS188, Spring 2014)
Pacman and Pacwoman have been searching for each other in the maze. Pacwoman has been
pregnant with a baby, and just this morning she has given birth to Pacbaby1. Because Pacbaby
was born before Pacman and Pacwoman were reunited in the maze, he has never met his father.
Naturally, Pacwoman wants to teach Pacbaby to recognize his father, using a set of pictures of
Pacman. She also has several pictures of ghosts to use as negative examples.

Because the pictures are black and white, and were taken from various angles, Pacwoman has
decided to teach Pacbaby to identify Pacman based on salient features: the presence of a bowtie
B, hat H or mustache M . The following table summarizes the content of the pictures. Each
feature takes realization in {0, 1}, where 0 and 1 mean the feature is respectively absent and
present. The subject of the picture is described by a random variable S ∈ {0, 1}, where 0 is a
ghost and 1 is Pacman.

B H M S

0 0 0 1
1 0 0 0
1 0 1 1
1 1 0 0
0 1 0 0
1 1 1 1

1. Suppose Pacbaby has a Naive Bayes based brain. Draw the Bayesian network that would
represent the dependencies between S, B, H and M for Pacbaby.

2. Write the Bayesian classification rule for this problem, i.e. the formula that given a data
point (b, h, m) returns the most likely subject. Write the formula in terms of conditional
and prior probabilities. What does the formula become under the assumptions of Pacbaby
?

3. What are the parameters of this model? Give estimates of these parameters according to
the pictures provided by Pacwoman.

4. Pacman eventually shows up wearing a bowtie, but no hat or mustache. Will Pacbaby
recognize his father?

1Congratulations!
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Exercise 7 Predict your grade

x1 x2 x3

y

The hereabove Bayesian network represents how the final grade of a class is computed. In this
model, x1, x2 and x3 respectively denote the grades obtained by a student at the homework,
project and exam. The teaching assistant that grades the homework also grades the project and
the exam, which introduces a slight bias in the corrections. In particular, x2 ∼ N (a1x1 + µ2, σ2

2)
and x3 ∼ N (a2x2 + µ3, σ2

3). Finally, y ∼ N (a3x1 + a4x2 + a5x3 + µy, σ2
y) stands for the final

grade, which is a linear combination of the grades obtained by the student during the semester
plus some Gaussian noise due to rounding errors. Answer the following questions about this
model.

1. Assuming the parameters of the model are known, what is the expected value of y given x1
and x2.

2. Suppose now that the model’s parameters are unknown. Given a learning set d =
{(xi,1, xi,2, yi)} of N independent and identically distributed points, determine the model
that best describes d.
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Exercise 8 Heteroscedastic linear regression
What becomes the expression of the weight vector w in the solution of question 2.2 if the noise is
different for each sample? In particular, yi ∼ N(wT x, σ2

i ) and we know the values σi.
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Quiz
The Normal distribution N (µ, σ) is described by the density function

□ p(x) = 1
σ exp (−(z + exp(−z))), with z = x−µ

σ .

□ p(x) = 1
2σ exp

(
− |x−µ|

σ

)
.

□ p(x) = 1√
2πσ2 exp

(
− (x−µ)2

2σ2

)
.

□ p(x) = 1 / πσ

[
1 +

(
x−µ

σ

)2
]
.

Consider the Bayesian network shown below. We want to infer P(A|b, e) where A is the query
variable, B and E are evidence variables, and C and D are hidden variables. Which of the
following statements is true?

A B C

D E

□ P(A|b, e) ∝
∑

c

∑
d P (c|b)P(b|A)P (b|e)P(A|d)P (e|d)P (d)

□ P(A|b, e) ∝
∑

c

∑
d P (c|b)P(b|A, e)P(A|d)P (e|d)

□ P(A|b, e) ∝
∑

c

∑
d P (c|b)P(b|A, e)P(A|d)P (e|d)P (d)

□ P(A|b, e) ∝
∑

b

∑
e P (c|b)P(A|b, e)P(A|d)P (e|d)P (d)

In a Bayesian network

□ Independence between two variables is guaranteed if all path connecting them are inactive.

□ We can guarantee dependence between two variables using d-separation.

□ A path between two nodes is active if it contains at least one active triplet.

□ A cascade triplet is active if the center node is observed.

In a one node Bayesian network with a binary variable following a Bernoulli distribution. If we
observe T positive realizations and F negative ones,

□ the maximum likelihood estimate of the positive probability is T

F
.

□ the maximum likelihood estimate of the positive probability is T + F

T
.

□ the maximum likelihood estimate of the positive probability is T

T + F
.

□ None of the above.
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