
Introduction to Artificial Intelligence (INFO8006)
Exercise session 4

Maximum likelihood estimation

Given a set of i.i.d. observations D = {x1, ..., xN }, a set of unknown parameters θ =
[θ1, ..., θK ] and the likelihood function P (xi | θ) of one observation given the parameters,
we derive the likelihood of the parameters for this set of observations as

P (D | θ) =
N∏

i=1
P (xi | θ).

From which we can recover the maximum likelihood estimate θ∗ of the parameters as

θ∗ = argmax
θ

P (D | θ).

This can typically be found by cancelling the derivative of the associated log-likelihood
w.r.t. each parameter

∂LL(D; θ)
∂θk

= 0, ∀k.

Bayesian learning and maximum a posteriori

We can treat parameters as random variables to incorporate uncertainty about their values.
To do so, we have to specify a prior distribution P (θ) over the parameters. When new
observations D are collected, the distribution over parameters can be updated, leading to
the posterior

P (θ | D) ∝ P (D | θ)P (θ).

When the latter is not analytically tractable, we can still compute the maximum a posteriori

θ∗ = argmax
θ

P (θ | D).
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Cheat sheet for Gaussian models

From the joint

p

(
x
y

)
= N

((
a
b

)
,

(
A C

CT B

))
,

the marginal and conditional distributions are given by

p(x) = N (a, A)
p(y) = N (b, B)

p(x | y) = N (a + CB−1(y − b), A − CB−1CT)
p(y | x) = N (b + CTA−1(x − a), B − CTA−1C).

On the other hand, from

p(x) = N (m, P)
p(y | x) = N (Hx + u, R),

we can recover the joint distribution as

p

(
x
y

)
= N

((
m

Hm + u

)
,

(
P PHT

HP HPHT + R

))
,

In session exercises: Ex. 1, Ex. 2
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Exercise 1 Nuclear power plant (AIMA, Ex 14.11)
In your local nuclear power station, there is an alarm that senses when a temperature gauge
exceeds a given threshold. The gauge measures the temperature of the core. Consider the
Boolean variables A (alarm sounds), FA (alarm is faulty), and FG (gauge is faulty) and the
multi-valued nodes G (gauge reading) and T (actual core temperature).

1. Draw a Bayesian network for this domain, given that the gauge is more likely to fail when
the core temperature gets too high.

2. From your network topology, can you conclude T ⊥ FA | FG and T ⊥ FA | FG, A?

All the path from T to FA are (T, FG, G, A, FA) and (T, G, A, FA).

Knowing FG, the triplet (G, A, FA) is inactive (v-structure). Since it is present in both
path, we can conclude that there are no active path, so T ⊥ FA | FG is true.

For the second relation, the triplet (G, A, FA) becomes active as we observe A. The only
way we can ensure conditional independence is by ensuring that at least one remaining
triplet is inactive in each path. For the first path, we have (T, FG, G) which is inactive
(cascade) which makes the path inactive. However, for the second path, (T, G, A) is active
(cascade) which makes the path active. We have at least one active path from T to FA

which prevents us to conclude the conditional independence in this case.

3. Suppose there are just two possible actual and measured temperatures: low (l) and high
(h). The probability that the gauge gives the correct temperature is x when it is working,
but y when it is faulty. Give the conditional probability table associated with G.

The CPT for G is shown below. Students should pay careful attention to the semantics of
FG, which is true when the gauge is faulty, i.e. not working properly.

T FG P (G = l|T, FG)

l 0 x

l 1 y

h 0 1 − x

h 1 1 − y

4. Suppose the alarm is always triggered by high measured temperatures, unless it is faulty,
in which case it never sounds. Give the conditional probability table associated with A.
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G FA P (A = 1|G, FA)

l 0 0
l 1 0
h 0 1
h 1 0

5. Suppose the gauge is not faulty and the alarm is triggered. Calculate an expression for the
probability that the temperature of the core is too high, in terms of the various conditional
probabilities in the network.

The probability of interest here is P (T = h|A = 1, FG = 0). Because the alarm’s behavior
is deterministic, we can deduce that G indicates high (h). Hence, P (T = h|A = 1, FG =
0) = P (T = h|A = 1, G = h, FG = 0). We also see that A ⊥ T |G. Therefore, we only need
to calculate

P (T = h|G = h, FG = 0) = P (T = h, G = h, FG = 0)
P (G = h, FG = 0)

= P (G = h|T = h, FG = 0)P (FG = 0|T = h)P (T = h)∑
t P (G = h|t, FG = 0)P (FG = 0|t)P (t) ,

which we cannot develop more as we don’t know P (T ) and P (FG|T ).
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Exercise 2 Student–TA relationship
The teaching assistant of the course is worried about the time he spends to prepare the exercise
sessions. He wants to investigate the influence of students can have on his schedule. To do so, he
builds the following model

S H

where S is a r.v. denoting the number of students leaving the room between a theoretical lecture
and the practical session that follows, and H is a r.v. representing the number of hours spent to
prepare the next session. He chooses the following relations for each variable

P (S = s) = Poisson(S = s; λ) = λse−λ

s! (1)

H = ωS + H0 + N (0, σ2) (2)
where H0 corresponds to the number of hours the TA should spend per session regarding its
contract and ω is the influence weight of students over the TA.

1. Identify the parameters of the Bayesian network and give the joint log-likelihood of one
pair (si, hi) given the model.

Given the topology of the network, we have to identify P (S = s) and P (H = h | S = s).
The former is given by (1) whereas the latter can be deduced from (2). We have

P (S = s) = Poisson(S = s; λ)

and
P (H = h | S = s) = N (ωs + H0, σ2).

The parameters of those distributions are θ = [λ, ω, σ].

The likelihood of a pair (si, hi) can be derived from the network. We have

P ((si, hi) | θ) = P (si)P (hi | si)

= λsie−λ

si!
1√
2πσ

e− (hi−ωsi−H0)2

2σ2

from which we derive the log-likelihood

LL((si, hi); θ) = si log λ − λ − log si! − log
√

2πσ − (hi − ωsi − H0)2

2σ2 . (3)

2. The TA collects a set D = {(si, hi)}N
i=1 of independent observations. Derive the maximum

likelihood estimate of the parameters.

We first have to define the joint likelihood of those observations. Since they are assumed
i.i.d., we have

P (D | θ) =
N∏

i=1
P ((si, hi) | θ)

Hence, deriving the log-likelihood

LL(D; θ) =
∑

i

LL((si, hi); θ)

= −N(λ + log
√

2πσ) +
∑

i

si log λ − log si! − (hi − ωsi − H0)2

2σ2
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The maximum likelihood parameters can be found by cancelling the derivative of the
log-likelihood w.r.t. each parameter.

For λ we have
∂LL

∂λ
= −N +

∑
i

si

λ

= 0

which gives λMLE = 1
N

∑
i

si .

For σ we have
∂LL

∂σ
= − 1

σ

(
N −

∑
i

(hi − ωsi − H0)2

σ2

)
∝ N − 1

σ2
∑

i

(hi − ωsi − H0)2

= 0

which gives σ2
MLE = 1

N

∑
i

(hi − ωsi − H0)2 .

For ω we have
∂LL

∂ω
=
∑

i

si(hi − ωsi − H0)
σ2

∝
(∑

i

si(hi − H0)
)

− ω
∑

i

s2
i

= 0

which gives ωMLE =
∑

i si(hi − H0)∑
i s2

i

.

3. The TA has just started to collect observations of students leaving the classroom. Being
an adept of the Bayes’ school, he knows that using MLE can lead to overfitting. Hence,
he decides to incorporate uncertainty in his analysis of the parameter λ as he has no
strong knowledge about it. Using a prior λ ∼ Gamma(α, β), what would be the posterior
distribution P (λ | S = {si}N

i=1)?

Hint: Gamma(x | α, β) = 1
Z xα−1e−βx, with Z a normalizing constant.

Using the Bayes’ theorem

P (λ | S) ∝ P (S | λ)P (λ)

∝ λα−1e−βλ
∏

i

λsie−λ

si!

= λα−1e−βλ
(

λ
∑

i
sie−Nλ∏
i si!

)
∝ λ(α+

∑
i

si−1)e−(β+N)λ

which corresponds to Gamma(α +∑
i si, β + N), the posterior density. Note that ∝ stands

for the normalizing constant of the posterior density. Everything that does not depends
explicitly on the parameter λ can be absorbed in the constant if it multiplies the whole.
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4. Knowing that the mean, the variance and the mode of Gamma(α, β) are respectively α

β
, α

β2

and α − 1
β

, interpret how they evolve w.r.t. N between the prior and the posterior.

We have
E(λ) : α

β
⇒ α +∑

i si

β + N
,

V(λ) : α

β2 ⇒ α +∑
i si

(β + N)2

and
arg max

λ
P (λ | .) : α − 1

β
⇒ α +∑

i si − 1
β + N

.

When N = 0, the prior and the posterior are similar, which is expected. When N → ∞,
knowing that s ∈ N by definition (number of students leaving the room), we can assume
that, for reasonable values of α, β, we have ∑i si ≫ α and N ≫ β. This implies that the
mean and the mode converge to the same value corresponding to λMLE. The variance
decreases towards 0, which suggests that λMLE is the best and unique estimate of λ for
an infinite amount of observations. This illustrates the trade-off between likelihood and
prior in a Bayesian parameter learning setting. As more data are observed, the uncertainty
about a parameter decreases smoothly from the prior to the likelihood.
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Exercise 3 Car diagnosis (AIMA, Ex 14.8)
Let be the following Bayesian network describing some features of a car’s electrical system and
engine. Each variable is Boolean, and the true value indicates that the corresponding aspect of
the vehicle is in working order.

Radio

Battery

Ignition Gas

Starts

Moves

1. Extend the network with the Boolean variables IcyWeather and StarterMotor.

IcyWeather is not caused by any of the car-related variables, so needs no parents. It directly
affects the battery and the starter motor. StarterMotor is an additional precondition for
Starts.

2. According to your knowledge of cars, give reasonable conditional probability tables for all
the nodes.

Reasonable probabilities may vary a lot depending on the kind of car and perhaps the
personal experience of the assessor. The following values indicate the general order of
magnitude and relative values that would be reasonable:

• A reasonable prior for IcyWeather might be 0.05 (depending on location and season).

• P (Battery|IcyWeather) = 0.95, P (Battery|¬IcyWeather) = 0.997.

• P (StarterMotor|IcyWeather) = 0.98, P (Battery|¬IcyWeather) = 0.999.

• P (Radio|Battery) = 0.9999, P (Radio|¬Battery) = 0.05.
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• P (Ignition|Battery) = 0.998, P (Ignition|¬Battery) = 0.01.

• P (Gas) = 0.995.

• P (Starts|Ignition, StarterMotor, Gas) = 0.9999, other entries 0.0.

• P (Moves|Starts) = 0.998.

3. How many independent values are contained in the joint probability distribution for eight
Boolean nodes, assuming that no conditional independence relations are known to hold
among them?

With 8 Boolean variables, the joint has 28 − 1 = 255 independent entries.

4. How many independent probability values do your network tables contain?

Given the topology with IcyWeather and StarterMotor, the total number of independent
CPT entries is 1 + 2 + 2 + 2 + 2 + 1 + 8 + 2 = 20.
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Exercise 4 Gaussian parameter learning with known σ2

You have in your possession a high-tech laser that emits light of intensity µl with great precision.
You want to use it to test a new light-intensity measurement device. You assume that your
measures yi follow a Gaussian distribution N (µy, σ2) with µy ∼ N (µl, σ2

l ) corresponding to the
model of your laser given in the manual. You assume that σ2 is fixed and that you can determine
it.

You have access to Yc a calibration set of C observations and you want to make N new measures
with your device. You want to study how you can reduce your uncertainty about the measures
using Yc.

1. Compute the prior and posterior predictive distributions P (y) and P (y | Yc) if you have
access to one observation, i.e. Yc = {yo}.

The following exercise uses the Gaussian model identities (cfr. theoretical reminder of this
session).

We first identify the components we have:

• P (y | µy) = N (µy, σ2)

• P (µy) = N (µl, σ2
l )

Prior predictive

P (y) =
ˆ

P (y | µy)P (µy)dµy.

From Gaussian identities, you can identify different parameters as follows

x = µy

m = µl

P = σ2
l

y = y

H = 1
u = 0
R = σ2

which corresponds to the joint

P (µy, y) = N
((

µl

µl

)
,

(
σ2

l σ2
l

σ2
l σ2

l + σ2

))

from which we extract P (y) = N (µl, σ2 + σ2
l ).

Posterior predictive

P (y | Yc) =
ˆ

P (y | µy)P (µy | Yc)dµy.

We first have to identify the posterior P (µy | Yc). Once again, from Gaussian identities,
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knowing P (Yc | µy) and P (µy) you can identify different parameters as follows

x = µy

m = µl

P = σ2
l

y = yo

H = 1
u = 0
R = σ2

which corresponds to the joint

P (µy, yo) = N
((

µl

µl

)
,

(
σ2

l σ2
l

σ2
l σ2

l + σ2

))

from which we extract

P (µy | yo) = N (µpost, σ2
post)

= N
(

µl + σ2
l

σ2 + σ2
l

(yo − µl), σ2
l − σ4

l

σ2 + σ2
l

)
.

After simplification, we identify the posterior parameters as

µpost = σ2

σ2 + σ2
l

µl + σ2
l

σ2 + σ2
l

yo

and
σ2

post = σ2

σ2
l + σ2 σ2

l .

Following the same development as for the prior predictive, we have

P (y | Yc) = N (µpost, σ2 + σ2
post).

2. Looking at you predictive uncertainty, what is the benefit of incorporating Yc?

As a reminder, we found
P (y) = N (µl, σ2 + σ2

l ).

P (y | Yc) = N (µpost, σ2 + σ2
post).

Comparing only the variances, we have

σ2 + σ2
l

?
≶ σ2 + σ2

post

σ2
l

?
≶ σ2

post

1
?
≶

σ2

σ2
l + σ2

σ2
l ≥ 0

and we deduce that the posterior predictive has a smaller or equal variance to the prior
one. We conclude that incorporating the calibration set can reduce uncertainty about the
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measures.

If we computed the variance for a calibration set of C observations, we would have found a
posterior variance

σ2
post = σ2

Cσ2
l + σ2 σ2

l .

Since σ2 is fixed, we see that including more observations reduces even more the posterior
predictive variance. In the limit case C → ∞, the posterior predictive variance converges
to σ2 which corresponds to the uncertainty of the instrument (you can’t reach a lower
uncertainty, it is called the aleatoric uncertainty).
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Exercise 5 Independence

A

B C

D

E

F

Considering the hereabove Bayesian network, which of the following statements are enforced by
the network structure?

We apply the d-separation algorithm. To show that two variables X and Y could be dependent,
it is sufficient to find a single active (undirected) path from X to Y . A path is active if all of its
consecutive triplets are active.

1. P (B, C) = P (B)P (C)

This is true iff (if and only if) B ⊥ C (B is independent from C). The three paths that
link B and C are (B, A, C), (B, D, C) and (B, F, A, C). (B, A, C) is active because A is
unknown (∧-structure). We cannot guarantee that B ⊥ C.

2. P (B, C|A) = P (B|A)P (C|A)

This is true iff B ⊥ C|A. This time, (B, A, C) is not active because A is known. (B, D, C) is
not active either because D is unknown (∨-structure). In (B, F, A, C), the triplet (B, F, A)
is active, but (F, A, C) is not. We can guarantee that B ⊥ C|A.

3. P (F, E) = P (F )P (E)

This is true iff F ⊥ E. The four paths that link F and E are (F, A, C, E), (F, A, B, D, C, E),
(F, B, A, C, E) and (F, B, D, C, E). In (F, A, C, E), the triplets (F, A, C) (∧-structure) and
(A, C, E) are both active. We cannot guarantee that F ⊥ E.

4. P (F |A, D, E) = P (F |A, D)

This is true iff F ⊥ E|A, D. This time, the triplets (F, A, C), (F, A, B) and (B, A, C) are
inactive (∧-structure, but A is known). In (F, B, D, C, E), (F, B, D) is active. Indeed,
knowing an extremity of a triplet does not impact whether it is active or not. Only the
center variable is important. Then we have (B, D, C) which is active (∨-structure, but D
is known) and (D, C, E) also. Hence, (F, B, D, C, E) is active and we cannot guarantee
that F ⊥ E|A, D.

5. P (B, E) = ∑
a,c,d,f P (a)P (B|a)P (c|a)P (d|B, c)P (E|c)P (f |a, B)

We notice that

P (A, B, C, D, E, F ) = P (A)P (B|A)P (C|A)P (D|B, C)P (E|C)P (F |A, B)
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corresponds exactly to

P (X1, . . . , Xn) =
n∏

i=1
P (Xi|parents(Xi)),

for the considered network, which we know is guaranteed. We also known that

P (B, E) =
∑

a,c,d,f

P (a, B, c, d, E, f)

Hence, the initial statement is always true.

For the same network, use inference by variable elimination to compute P (E|A = 1, B = 1).

We have

P (E|A = 1, B = 1) = α
∑
c,d

P (A = 1, B = 1, c, d, E)

= α
∑
c,d

P (A = 1)P (B = 1|A = 1)P (c|A = 1)P (d|B = 1, c)P (E|c)

= αP (A = 1)P (B = 1|A = 1)
∑

c

P (c|A = 1)P (E|c)
∑

d

P (d|B = 1, c).

We define the initial factors as

f1 = P (A = 1)
f2 = P (B = 1|A = 1)

f3(C) = P (C|A = 1)
f4(E, C) = P (E|C)
f5(C, D) = P (D|B = 1, C)

and the composite factors as

f6(C) =
∑

d

f5(C, d)

f7(C, E) = f3(C) × f4(E, C) × f6(C)
f8(E) =

∑
c

f7(c, E)

f9(E) = f1 × f2 × f7(E).

Finally,
P (E|A = 1, B = 1) = αf9(E) = f9(E)∑

e f9(e) .
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Exercise 6 Pacbaby (UC Berkeley CS188, Spring 2014)
Pacman and Pacwoman have been searching for each other in the maze. Pacwoman has been
pregnant with a baby, and just this morning she has given birth to Pacbaby1. Because Pacbaby
was born before Pacman and Pacwoman were reunited in the maze, he has never met his father.
Naturally, Pacwoman wants to teach Pacbaby to recognize his father, using a set of pictures of
Pacman. She also has several pictures of ghosts to use as negative examples.

Because the pictures are black and white, and were taken from various angles, Pacwoman has
decided to teach Pacbaby to identify Pacman based on salient features: the presence of a bowtie
B, hat H or mustache M . The following table summarizes the content of the pictures. Each
feature takes realization in {0, 1}, where 0 and 1 mean the feature is respectively absent and
present. The subject of the picture is described by a random variable S ∈ {0, 1}, where 0 is a
ghost and 1 is Pacman.

B H M S

0 0 0 1
1 0 0 0
1 0 1 1
1 1 0 0
0 1 0 0
1 1 1 1

1. Suppose Pacbaby has a Naive Bayes based brain. Draw the Bayesian network that would
represent the dependencies between S, B, H and M for Pacbaby.

S

B

H

M

2. Write the Bayesian classification rule for this problem, i.e. the formula that given a data
point (b, h, m) returns the most likely subject. Write the formula in terms of conditional
and prior probabilities. What does the formula become under the assumptions of Pacbaby
?

Given (b, h, m), the most likely subject is given by the maximum a posteriori (MAP)

1Congratulations!
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estimation

sMAP = arg max
s

P (s|b, h, m)

= arg max
s

P (b, h, m|s)P (s).

Under the naive Bayes assumptions of Pacbaby, B, H and M become independent condi-
tionally to S, i.e. P (B, H, M |S) = P (B|S)P (H|S)P (M |S). Then, the formula becomes

sMAP = arg max
s

P (b|s)P (h|s)P (m|s)P (s).

3. What are the parameters of this model? Give estimates of these parameters according to
the pictures provided by Pacwoman.

The parameters of the model are the elements of the prior vector P (S) and the (conditional)
probability matrices P (B|S), P (H|S) and P (M |S). An (unbiased) estimation of these
elements can be computed as the frequency of their respective events within the learning
set (of pictures).

S P (S) P (B = 1|S) P (H = 1|S) P (M = 1|S)

0 3
6

2
3

2
3

0
3

1 3
6

2
3

1
3

2
3

4. Pacman eventually shows up wearing a bowtie, but no hat or mustache. Will Pacbaby
recognize his father?

Pacbaby will recognize his father if sMAP = 1 for (b, h, m) = (1, 0, 0). Using the parameters
estimated previously, we have

P (b|0)P (h|0)P (m|0)P (0) = 2
3 ×

(
1 − 2

3

)
×
(

1 − 0
3

)
× 3

6 ≈ 0.111

P (b|1)P (h|1)P (m|1)P (1) = 2
3 ×

(
1 − 1

3

)
×
(

1 − 2
3

)
× 3

6 ≈ 0.074.

Therefore, sMAP = 0, meaning that Pacbaby will not recognize his father.
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Exercise 7 Predict your grade

x1 x2 x3

y

The hereabove Bayesian network represents how the final grade of a class is computed. In this
model, x1, x2 and x3 respectively denote the grades obtained by a student at the homework,
project and exam. The teaching assistant that grades the homework also grades the project and
the exam, which introduces a slight bias in the corrections. In particular, x2 ∼ N (a1x1 + µ2, σ2

2)
and x3 ∼ N (a2x2 + µ3, σ2

3). Finally, y ∼ N (a3x1 + a4x2 + a5x3 + µy, σ2
y) stands for the final

grade, which is a linear combination of the grades obtained by the student during the semester
plus some Gaussian noise due to rounding errors. Answer the following questions about this
model.

1. Assuming the parameters of the model are known, what is the expected value of y given x1
and x2.

Our task is to find the expectation

E
p(y|x1,x2)

[y] =
ˆ

y p(y|x1, x2) dy.

We know that
p(y|x1, x2) =

ˆ
p(y|x1, x2, x3) p(x3|x1, x2) dx3,

where p(y|x1, x2, x3) and p(x3|x1, x2) are linear Gaussian distributions given in the state-
ment. Therefore, we have

p(y|x1, x2) = N
(
a3x1 + a4x2 + a5(a2x2 + µ3) + µy, (a5σ3)2 + σ2

y

)
and, by definition of a Gaussian distribution,

E
p(y|x1,x2)

[y] = a3x1 + (a4 + a5a2)x2 + a5µ3 + µy.

2. Suppose now that the model’s parameters are unknown. Given a learning set d =
{(xi,1, xi,2, yi)} of N independent and identically distributed points, determine the model
that best describes d.

We know that the distribution of y given x1 and x2 takes the form N (w1x1 + w2x2 + b, σ2).
Then, our task is to find the parameters h = (w1, w2, b, σ) that maximize the likelihood of
d, i.e. the maximum likelihood estimation (MLE)

hMLE = arg max
w

p(d|h)

= arg max
h

∏
i

p(xi, yi|h)

= arg max
h

log
∏

i

p(xi, yi|h)

= arg max
h

∑
i

log p(xi, yi|h)
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= arg max
h

∑
i

log p(yi|h, xi) + log p(xi)

= arg max
h

∑
i

log p(yi|h, xi)

= arg max
h

∑
i

log
[

1√
2πσ2

exp
(

−(wT xi − yi)2

2σ2

)]

= arg max
h

∑
i

−1
2 log(2πσ2) − (wT xi − yi)2

2σ2

= arg min
h

log σ2 + 1
σ2

1
N

∑
i

(wT xi − yi)2,

where xi =
(
xi,1 xi,2 1

)T
and w =

(
w1 w2 b

)T
. In the last expression, we observe

that the summation term is independent from σ. Therefore,

wMLE = arg min
w

∑
i

(wT xi − yi)2,

which exactly corresponds to a linear regression problem. Then, we find wMLE by canceling
the gradient with respect to w, i.e.

0 = ∇w

∑
i

(wT xi − yi)2

= ∇w

∑
i

(wT xi − yi)(wT xi − yi)

= ∇w

∑
i

(wT xi)2 + y2
i − 2wT xiyi

= ∇w

(
wT XT Xw + Y T Y − 2wT XT Y

)
= 2XT Xw − 2XT Y

where X = (xT
i ) ∈ RN×3 and Y = (yi) ∈ RN . Finally, we have

0 = XT XwMLE − XT Y

⇔ wMLE = (XT X)−1XT Y.

Afterwards, we find σMLE such that

σMLE = arg min
σ

log σ2 + MSE
σ2

=
√

MSE,

where MSE denotes the mean squared error

1
N

∑
i

(wMLE
T xi − yi)2.
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Exercise 8 Heteroscedastic linear regression
What becomes the expression of the weight vector w in the solution of question 2.2 if the noise is
different for each sample? In particular, yi ∼ N(wT x, σ2

i ) and we know the values σi.
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Quiz
The Normal distribution N (µ, σ) is described by the density function

□ p(x) = 1
σ exp (−(z + exp(−z))), with z = x−µ

σ .

□ p(x) = 1
2σ exp

(
− |x−µ|

σ

)
.

■ p(x) = 1√
2πσ2 exp

(
− (x−µ)2

2σ2

)
.

□ p(x) = 1 / πσ

[
1 +

(
x−µ

σ

)2
]
.

Consider the Bayesian network shown below. We want to infer P(A|b, e) where A is the query
variable, B and E are evidence variables, and C and D are hidden variables. Which of the
following statements is true?

A B C

D E

□ P(A|b, e) ∝
∑

c

∑
d P (c|b)P(b|A)P (b|e)P(A|d)P (e|d)P (d)

□ P(A|b, e) ∝
∑

c

∑
d P (c|b)P(b|A, e)P(A|d)P (e|d)

■ P(A|b, e) ∝
∑

c

∑
d P (c|b)P(b|A, e)P(A|d)P (e|d)P (d)

□ P(A|b, e) ∝
∑

b

∑
e P (c|b)P(A|b, e)P(A|d)P (e|d)P (d)

In a Bayesian network

■ Independence between two variables is guaranteed if all path connecting them are inactive.

□ We can guarantee dependence between two variables using d-separation.

□ A path between two nodes is active if it contains at least one active triplet.

□ A cascade triplet is active if the center node is observed.

In a one node Bayesian network with a binary variable following a Bernoulli distribution. If we
observe T positive realizations and F negative ones,

□ the maximum likelihood estimate of the positive probability is T

F
.

□ the maximum likelihood estimate of the positive probability is T + F

T
.

■ the maximum likelihood estimate of the positive probability is T

T + F
.

□ None of the above.
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