
INFO8006 - Introduction to Artificial Intelligence
Exercise session 2

Game formulation
A search problem is defined by

• A representation for states.
• The initial state of the agent.
• A player function p = player(s) which defines who moves in s.
• A set of actions allowed in every state s.
• A transition model s′ = result(s, a) that returns the resulting state s′ for using action

a in state s.
• A terminal test which determines if the game is over.
• A utility function utility(s, p) that assigns a final numerical value to player p in

terminal state s.

Adversarial search

In a two-player game, agent share the same utility. The first want to minimize it (MIN
agent) whereas the other wants the opposite (MAX agent). Assuming that MAX moves
first and is the agent that we want to win, the problem can be framed as a search problem
where

• A goal state is a terminal state where MAX wins.
• MAX agent need a model of its opponent.

The minimax value is the largest utility accessible for MAX from a state s, assuming MIN
acts optimally.

H-minimax
Searching the exact minimax solution is most of the time not feasible. One way to bypass
this issue is by cutting the search. To do so, we define

• An evaluation function eval(s) that estimates the utility that would be reached from
a state s.

• A cutoff test cutoff(s, d) that replaces the terminal test. The later determines if the
search must be stopped at depth d in state s.

expectiminimax

When the game is stochastic, we can use the minimax algorithm on the expected value
of a state. We have to insert intermediate chance nodes between moves to account for th
distribution over actions. The algorithm becomes

Expectiminimax(s) =


Utility(s) if Terminal(s)
maxaExpectiminimax(Result(s,a)) if Player(s) = MAX
minaExpectiminimax(Result(s,a)) if Player(s) = MIN∑

r P (r)Expectiminimax(Result(s,r)) if Player(s) = CHANCE.

In session exercises: Ex. 1, Ex. 2

1



Exercise 1 Tic-Tac-Toe (AIMA, Ex 5.9)
Tic-Tac-Toe is a game for two players, X and O, who take turns marking the cells of a 3 × 3 grid.
The player who succeeds in placing three of their marks in a straight line (horizontal, vertical or
diagonal) wins the game. If neither of the players win before the grid is full, its a draw.

We consider X as the max player and O as the min player. We define Xn as the number of rows,
columns or diagonals with exactly n X’s and no O’s. Similarly, On is the number of rows, columns,
or diagonals with just n O’s. A position s is terminal if X3(s) ≥ 1, O3(s) ≥ 1 or if the grid is full.
The utility function assigns +1, −1 or 0 to such position, respectively. For non-terminal positions,
we use an evaluation function defined as eval(s) = 3X2(s) + X1(s) − 3O2(s) − O1(s).

1. Define the search problem associated with the Tic-Tac-Toe game.

2. Approximately how many possible game states of Tic-Tac-Toe are there?

3. Show the whole game tree starting from an empty grid down to depth 2 (one X and one O
on the board), taking symmetry into account.

4. Annotate your tree with the evaluations of all the positions at depth 2.

5. Using the H-Minimax algorithm, annotate your tree with the backed-up values for the
positions at depths 1 and 0, and use those values to choose the optimal starting move.

6. Is this evaluation function a good heuristic? If not, provide one or more states s for which
eval(s) is misleading.

2



Exercise 2 Minimax (CS188, Fall 2019)

10 8 3 152 7 6 5 4

1. Consider the zero-sum game tree shown above. Triangles that point up, such as at the
top node (root), represent choices for the maximizing player; triangles that point down
represent choices for the minimizing player. Assuming both players act optimally, fill in
the Minimax value of each node.

2. Which nodes can be pruned from the game tree above through alpha-beta pruning? If no
nodes can be pruned, explain why not. Assume the search goes from left to right; when
choosing which child to visit first, choose the left-most unvisited child.

3. Again, consider the same zero-sum game tree, except that now, instead of a minimizing
player, we have a chance node that will select one of the three values uniformly at random.
Fill in the Expectminimax value of each node. The game tree is redrawn below for your
convenience.

3



Exercise 3 21 misery game (January 2019)
The game “21” is played with any number of players who take turns increasing a counter. The
counter starts at 1 and each player in turn increases the counter by 1, 2, or 3, but may not
exceed 21; the player who says “21” or larger loses.

1. Define the search problem associated with the 2-player version of the “21” game.

2. For the following, consider the game of “5” (still in its 2-player version), which has the
same rules has “21” except that you should not say 5 or more. Show the whole game tree.

3. Using the Minimax algorithm, annotate your tree with the backed-up values, and use those
values to choose the optimal starting move.

4



Exercise 4 Leapfrog (AIMA, Ex 5.8)

1 2 3 4

A B

Consider the following two-player turn-taking game which initial configuration is shown in the
figure above. Player A moves first. Each player must move their token to an adjacent free cell
in either direction. If the opponent occupies an adjacent cell, then a player may jump over the
opponent to the next free cell, if any. For example, if A is on 3 and B is on 2, then A may move
back to 1. The game ends when a player reaches the opposite end of the board. If player A
reaches cell 4 first, then the value of the game to A is +1; if player B reaches cell 1 first, then
the value of the game to A is −1.

1. Define the search problem associated with this game.

2. Draw the complete game tree, using the following conventions:

• Put each terminal state in a square box and annotate it with its game value.

• Put loop states (states that already appear on the path to the root) in double square
boxes. Since their value is unclear, annotate them with a “?” symbol.

3. Explain why the standard minimax algorithm would fail on this game.

4. Annotate each node with its backed-up minimax value. Explain how you handled the “?”
values and why.

5. This 4-cell game can be generalized to n cells for any n > 2. Prove that A wins if n is even
and loses if n is odd.

5



Exercise 5 Chess and transposition table (AIMA, Ex 5.15)
Suppose you have a chess program that can evaluate 16 million nodes per second.

1. Decide on a compact representation of a game state for storage in a transposition table.

2. About how many entries can you fit in a 4 GB in-memory table?

3. Will that be enough for the three minutes of search allocated for one move?

4. How many table lookups can you do in the time it would take to do one evaluation?
Suppose that you have a 3.2 GHz machine and that it takes 20 operations to do one lookup
on the transposition table.

6



Quiz
In Monte Carlo Tree Search (MCTS), in the formula

Q(n′, p)
N(n′) + c

√
2 log N(n)

N(n′) ,

which of the following is true?

□ The first term encourages the exploitation of higher-reward nodes, while the second
encourages the exploration of less-visited nodes.

□ The first term encourages the exploration of less-visited nodes, while the second term
encourages the exploitation of higher-reward nodes.

□ The first term encourages the exploitation of highly-visited nodes, while the second term
encourages the exploration of lesser-rewarding nodes.

□ The first term encourages the exploration of lesser-rewarding nodes, while the second term
encourages the exploitation of highly-visited nodes.

In adversarial search,

□ The horizon effect arises when the search is stuck in a cycle.

□ The horizon effect arises when the evaluation function is perfect.

□ The deeper in the tree the evaluation function is buried, the more the quality of the
evaluation matters.

□ If not looked deep enough, bad moves may appear as good moves, because their consequences
are hidden beyond the search horizon.

A quiescent state is

□ A state in which the game will loop indefinitely.

□ A state in which an agent is stuck.

□ A state in which the outcome of a game is unlikely to vary a lot in the near future.

□ A state in which the MAX agent is certain to win.

Minimax algorithm

□ Cannot fail more against a sub-optimal agent than an optimal one.

□ Can fail more often if the opponent is sub-optimal but predictable and that we underestimate
the opponent strategy.

□ Does not ensure that the MAX agent always wins.

□ All of the above.

7


	Tic-Tac-Toe (AIMA, Ex 5.9)
	Minimax (CS188, Fall 2019)
	21 misery game (January 2019)
	Leapfrog (AIMA, Ex 5.8)
	Chess and transposition table (AIMA, Ex 5.15)

