
INFO8006 - Introduction to Artificial Intelligence
Exercise session 1

Search problem formulation

A search problem is defined by
• A representation for states.
• The initial state of the agent.
• A set of actions allowed in every state s.
• A transition model s′ = result(s, a) that returns the resulting state s′ for using action

a in state s.
• A goal test which determines if the problem is solved in state s.
• A path cost that assigns a numerical cost to each path. We assume the later to be a

sum of positive step costs c(s, a, s′) along the path.

Searching strategy

• Depth-First Search uses a stack (LIFO) for the fringe.
• Breadth-First Search uses a queue (FIFO) for the fringe.
• Uniform-Cost Search uses a priority queue for the fringe,

where the priority is the cumulative cost g(n).
• Greedy Search uses a priority queue for the fringe,

where the priority is a heuristic h(n).
• A* Search uses a priority queue for the fringe,

where the priority is the sum of both heuristic h(n) and cumulative cost g(n).

Heuristic

A heuristic function h(n) estimates the cost of the cheapest path from node n to a goal
state.
A heuristic is admissible if

0 ≤ h(n) ≤ h∗(n)

with h∗(n) being the tightest heuristic, i.e. the true cumulative cost.
A heuristic is consistent if

h(n) ≤ c(n, a, n′) + h(n′)

for all node-action-resulting node triplets (n, a, n′).

In session exercises: Ex. 1, Ex. 2.1-3, Ex. 3

1

Exercise 1 Path finding
Tram’Ardent deployed a new robot to help them on the finishing touches of Liège worksite. This
robot’s goal is to convey weeds that were removed by the gardeners to a container as fast as
possible. Assuming that

• the fuel cost used by the robot is negligible

• the robot can only navigate on guides that are placed in a rectangular grid configuration
and can locate itself on the grid

• there is only one pile and one container by zone (i.e. by grid) for which positions are known
by the robot

• the speed of the robot is constant and the grass loading/unloading is instantaneous

• the robot can only carry a limited weight of grass at once

• the robot can know the initial weight of grass on the pile.

For a given grid

1. Formulate a corresponding search problem.

State representation: Assuming a H × W grid, the state is represented by the position
(i, j) ∈ {1, ..., W} × {1, ..., H} of the robot, the remaining weight of grass wG and a flag L
indicating whether the robot is loaded or not. Following other assumptions, we also define
the location of the pile and the container respectively by P = (ip, jp) and C = (ic, jc) as
well as the weight limit of the robot wmax.

Initial state: No specific information is given, we can assume it starts anywhere on the
grid, unloaded. s0 = (i0, j0, wG0, False)

Actions: a ∈ {LEFT, UP, RIGHT, DOWN}

Transition model:

(i, j)′ =

(i + 1, j) if a = RIGHT and i < W

(i, j + 1) if a = UP and j < H

(i − 1, j) if a = LEFT and i > 1
(i, j − 1) if a = DOWN and j > 1
(i, j) otherwise

w′
G =

{
wG − min(wG, wmax) if not L and (i, j)′ == P

wG otherwise

L′ =

True if L and (i, j)′ ̸= C

True if wG > 0 and (i, j)′ == P

False otherwise

2

Goal test: goal(s) = not L and wG == 0

Step cost: Under the given assumptions, every step from one node to another is equivalent.
Then c(s, a, s′) = 1 is relevant. Note that it could be any constant step cost.

2. Knowing that the terrain can be rugged at specific places, causing slow down of the robot,
propose an admissible heuristic which estimates the remaining cost at any node.

As usual, in grid problem, Manhattan distance or Euclidean distance is admissible as long
as the step cost is 1 everywhere1. However, the robot can go back and forth if wG > wmax.
Then an admissible heuristic would be

h(s) =
{

|ic − i| + |jc − j| + 2⌈ wG
wmax

⌉
(
|ic − ip| + |jc − jp|

)
if L

|ip − i| + |jp − j| +
(
2⌈ wG

wmax
⌉ − 1

)(
|ic − ip| + |jc − jp|

)
if not L

which would have been the true remaining cost if the terrain was not rugged.

3. Now the robot can move in diagonal. Is your heuristic still admissible? If not, what should
you change? What if the robot is twice as fast diagonally?

The Manhattan distance cannot be used anymore, only the Euclidean distance would
be admissible (amongst the previous proposals) or any other function dominated by the
Euclidean distance.
If the robot moves in diagonal twice faster, you should divide the distance by a factor 2
(equivalent to say that the cost is 0.5 in diagonals). The most limiting case being a perfect
diagonal going from P to C.

1Choosing a constant step cost K > 1 does not break admissibility in this case. If K ∈ [0, 1[, then h(s) is not
admissible but Kh(s) is.

3

Exercise 2 Search algorithms

S(tart)
h = 11

A
h = 20

B
h = 12

C
h = 10

D
h = 3

E
h = 19

G(oal)

1

4

3 7

5

10

1 20

2

5

For each of the following search algorithms, apply the Graph-Search algorithm (lecture 2, slide
62) and give the order in which the states, represented by the nodes of this undirected graph, are
expanded, as well as the final path returned by the algorithm. If two nodes are in competition to
be expanded, the conflict is resolved by assigning priority according to alphabetical order.

1. Depth-First Search (DFS)

We use a Last-In First-Out (LIFO) fringe, i.e. a stack, to perform the search. In this stack,
we keep track of the states that are reachable from the visited (closed) states. These states
are annotated with the state they were expanded from, which allows to reconstruct the
path at the end. At each step, the state at the top of the stack is popped. If it was not
visited previously, it is expanded, which consists in pushing its neighbors to the top of the
stack.

Fringe (LIFO stack) Closed

S
C(S) B(S) A(S) S
C(S) B(S) B(A) S A
C(S) B(S) E(B) D(B) C(B) S A B
C(S) B(S) E(B) D(B) S A B C
C(S) B(S) E(B) G(D) E(D) S A B C D
C(S) B(S) E(B) G(D) G(E) S A B C D E

For readability, nodes that are already in the closed set are not added to the fringe.

Expansion: S, A, B, C, D, E, G. Path: S, A, B, D, E, G.

2. Breadth-First Search (BFS)

We use a First-In First-Out (FIFO) fringe, i.e. a queue, to keep track of the reachable
states. At each step, the state at the front of the queue is popped. If it was not visited
previously, it is expanded, which consists in pushing its neighbors to the back of the queue.

Expansion: S, A, B, C, D, E, G. Path: S, B, D, G.

3. Uniform-Cost search (UCS)

The fringe is a priority queue. The priority of a node n in the queue is its cumulative cost
g(n).

4

Fringe (FIFO queue) Closed

S
C(S) B(S) A(S) S
B(A) C(S) B(S) S A
E(B) D(B) C(B) B(A) C(S) S A B
E(B) D(B) C(B) B(A) S A B C
E(B) D(B) S A B C
G(D) E(D) E(B) S A B C D
G(E) G(D) S A B C D E

Fringe (priority queue) Closed

S(0)
B(S, 4) C(S, 3) A(S, 1) S
B(A, 6) B(S, 4) C(S, 3) S A
B(A, 6) B(C, 5) B(S, 4) S A C
D(B, 11) E(B, 9) B(A, 6) B(C, 5) S A C B
D(B, 11) E(B, 9) S A C B
G(E, 29) D(B, 11) D(E, 10) S A C B E
G(E, 29) G(D, 20) D(B, 11) S A C B E D
G(E, 29) G(D, 20) S A C B E D

Expansion: S, A, C, B, E, D, G. Path: S, B, E, D, G.

4. Greedy search

The fringe is also a priority queue, but the priority of a node n in the queue is its heuristic
cost h(n).

Fringe (priority queue) Closed

S(11)
A(S, 20) B(S, 12) C(S, 10) S
A(S, 20) B(S, 12) B(C, 12) S C
A(S, 20) A(B, 20) E(B, 19) B(S, 12) D(B, 3) S C B
A(S, 20) A(B, 20) E(D, 19) E(B, 19) B(S, 12) G(D, 0) S C B D

Expansion: S, C, B, D, G. Path: S, C, B, D, G.

5. A∗

The priority of a node n is the estimated cost f(n) = g(n) + h(n) of the cheapest solution
through n.

(a) Is the heuristic admissible ? If not, make it admissible.

A heuristic h is admissible if 0 ≤ h(n) ≤ h∗(n), where h∗(n) is the true forward cost
of n. In the graph, h(E) = 19 is larger than h∗(E) = 11, making h non-admissible.
This is problematic as it means E (and G) would be expanded before D.

Setting h(E) = 11 is sufficient to make h admissible.

5

(b) Is the heuristic consistent ? If not, can we apply Graph-Search ?

In a graph, a heuristic h is consistent if h(n) ≤ c(n, n′)+h(n′) for all node n′ reachable
from n, where c(n, n′) is the step cost from n to n′. Because this graph is undirected,
unless c(n, n′) ≥ |h(n′) − h(n)| for all pairs of neighbors (n, n′) (which is not the case),
it cannot be consistent.

This is problematic as it could create situations where a node has been expanded
within a path that is not optimal, and cannot be re-expanded later on within the
optimal one. Hence, the algorithm loses its optimality.

Fortunately, there is a modification of Graph-Search that can handle inconsistent
heuristics. If we annotate the nodes in the closed set with the priority at which they
were expanded, we can re-expand a node if it has a better (lower) priority than before.
The priority in the closed set is then updated.

We apply the modified algorithm with the admissible heuristic. For readability, nodes that
are already in the closed set with a lower priority are not added to the fringe.

Fringe (priority queue) Closed

S(11)
A(S, 21) B(S, 16) C(S, 13) S(11)
A(S, 21) B(C, 17) B(S, 16) S(11) C(13)
A(B, 29) A(S, 21) E(B, 20) B(C, 17) D(B, 14) S(11) C(13) B(16)
A(B, 29) E(D, 23) G(D, 21) A(S, 21) E(B, 20) B(C, 17) S(11) C(13) B(16) D(14)
A(B, 29) E(D, 23) G(D, 21) A(S, 21) E(B, 20) S(11) C(13) B(16) D(14)
G(E, 29) A(B, 29) E(D, 23) G(D, 21) A(S, 21) D(E, 13) S(11) C(13) B(16) D(14) E(20)
G(E, 29) A(B, 29) E(D, 23) G(D, 21) A(S, 21) G(D, 20) S(11) C(13) B(16) D(13) E(20)

Expansion: S, C, B, D, E, D, G. Path: S, B, E, D, G.

6

Exercise 3 Maze Car (CS188, Spring 2014)

Consider a car agent which has to exit a maze. At all time-steps, the agent points at direction
d ∈ (N, S, E, W). With a single action, the agent can either move forward at an adjustable
velocity v ∈ [0, V] or turn. The turning actions are left and right, which change the agent’s
direction by 90 degrees. Turning is only permitted when the velocity is zero (and leaves it at
zero). The moving actions are faster and slower. The action faster increments the velocity
by 1 and slower decrements the velocity by 1; in both cases the agent then moves a number of
squares equal to its new velocity. Any action that would result in a collision with a wall is illegal.
Any action that would reduce v below 0 or above a maximum speed V is also illegal. The agent’s
goal is to find a plan which parks it (stationary) on the exit square using as few actions (time
steps) as possible.

As an example, in the hereabove maze, if the agent is initially stationary, it might first turn to
the east using right, then move one square east using faster, then two more squares east using
faster again. However, the agent will have to slow to take the turn.

1. For a grid of size M ×N , what is the size of the state space? Assume that all configurations
are reachable from the starting state.

N × M × 4 × (V + 1)

2. What is the maximum branching factor of this problem? Assume that illegal actions are
simply not returned by the successor function.

The maximum branching factor is 3, and this happens when the agent is stationary. While
stationary, it can take the following 3 actions: faster, left, right.

3. Is the Manhattan distance from the agent’s location to the exit’s location admissible?

No because it does not take the velocity of the agent into account. For instance, in a long
straight path, the number of steps could be smaller than the number of squares.

4. If we used an inadmissible heuristic in A∗ tree search, could it change the completeness of
the search? And the optimality ?

With an inadmissible heuristic, A∗ will still find a final state if there exists a reachable one
(complete), but it could stop the search before finding the optimal one (non optimal).

5. State and motivate a non-trivial admissible heuristic for this problem.

Some examples of admissible heuristics are:

• The Manhattan distance divided by the max speed V .

• We can improve the above heuristic by adding the current velocity v, as the agent has
to slow down to 0 before reaching its goal. This heuristic dominates the first one as it

7

is always larger (or equal), but is still admissible as it never overestimates the true
forward cost.

6. Give a general advantage that an inadmissible heuristic might have over an admissible one.

The time to solve an A∗ tree search problem is a function of two factors: the number of
nodes expanded, and the time spent per node.

• An inadmissible heuristic may be faster to compute, leading to a solution that is
obtained faster due to less time spent per node.

• Admissible heuristics are sometimes too conservative (well below h∗). An inadmissible
heuristic could be a better estimate of the true forward cost h∗ (although it will
overestimate at times), thus expanding less nodes.

We lose the guarantee of optimality by using an inadmissible heuristic. However, sometimes,
we may be okay with finding a suboptimal solution faster.

8

Exercise 4 Heuristics (CS188, Spring 2019)
Consider a graph search problem where all edges have a unit cost and the optimal solution has
cost C∗. Let h(n) be a heuristic which is max{h∗(n) − k, 0}, where h∗(n) is the true forward
cost of n and k ≤ C∗ is a non-negative constant.

1. Is h admissible?

Yes. If h∗ ≥ k, h∗ − k ≤ h∗, otherwise 0 ≤ h∗.

2. Which of the following is the most reasonable description of how much more work will be
done, i.e. how many more nodes will be expanded, with heuristic h compared to h∗, as a
function of k?

(a) Constant in k

(b) Linear in k

(c) Exponential in k

(d) Unbounded

With this heuristic, all nodes n such that h∗(n) ≤ k, i.e. within distance k from the
objective, will have have a null heuristic. Assuming a node can have up to p parents, there
is at most pk such node and the algorithm will expand all of them, in the worst case. Thus,
the additional work is exponential in k.

9

Exercise 5 Search algorithms

S(tart)

A B

C

D

G(oal)

1

12

3

1
3

1

2
3

For each of the following search algorithms, give the order in which states are expanded as well
as the final path returned by the algorithm. If two nodes are in competition to be expanded, the
conflict is resolved by alphabetical order.

1. Depth-First search (DFS)

Expansion: S, A, B, D, C, G. Path: S, A, B, D, C, G.

2. Breadth-First Search (BFS)

Expansion: S, A, G. Path: S, G.

3. Uniform-Cost search (UCS)

Expansion: S, A, C, D, B, G. Path: S, A, C, G.

4. Consider the following heuristics: which one is not admissible? Why?

State h1 h2

S 5 4
A 3 2
B 6 6
C 2 1
D 3 3
G 0 0

The heuristic h1 is not admissible because the real cost from S to G is 4 which is smaller
than 5.

5. A∗ (with the admissible heuristic)

Expansion: S, A, C, G. Path: S, A, C, G.

10

Exercise 6 The hive (CS188, Spring 2019)
The hive of insects needs your help. You control an insect in a rectangular maze-like environment
of size M × N , as shown on the Figure below. At each time-step, the insect can move into a free
adjacent cell or stay in its current location. All actions have a unit cost.

In this particular case, the insect must pass through a series of partially flooded tunnels, as
illustrated by the gray cells on the map. The insect can hold its breath for A time-steps in a row.
Moving into a flooded cell requires your insect to consume 1 unit of air, while moving into a free
cell refills its air supply.

• Give a minimal state space for this problem (do not include extra information). You should
answer for a general instance of the problem, not the specific map above.

The position of the insect as well as the number of unit of air it has left. s = (x, y, ua) ∈
[1, M] × [1, N] × [1, A].

• Give the size of your state space.

M × N × A

11

Exercise 7 Pacmen (INFO8006, January 2023)
Pacman and his friends have decided to combine forces and go on the offensive, and are now
chasing ghosts! In a grid of size M × N , Pacman and P − 1 of his friends are moving around
to collectively eliminate all of the ghosts in the grid by stepping on the same square as each of
them. Moving into the same square as a ghost will eliminate it from the grid. At every turn,
Pacman and his friends may choose one of the four (north, south, east, west) actions but may
not collide with each other. In other words, any action that would result in two or more Pacmen
occupying the same square will result in no movement for either of the Pacmen. Additionally,
Pacman and his friends are indistinguishable from each other. There are a total of G ghosts,
which are also indistinguishable from each other and cannot move.

Treating this as a search problem, we consider each configuration of the grid to be a state, and
the goal state to be the configuration where all ghosts have been eliminated from the board. The
cost of each turn (all Pacmen move once) is 1. Below is an example starting state, as well as an
example of goal state.

Initial state example Final state example

Suppose that Pacman has no friends (P = 1).

1. What is the size of the minimal state space representation? Explain your answer.

The state s is fully described with the position of Pacman and a boolean for each ghost
(eaten or not). The size of the state space is therefore M × N × 2G. We don’t need to save
the position of the ghosts within the state because they never change.

2. Explain whether each of the following heuristics is admissible, consistent, neither, or both.

• h1(s) = the sum of the Manhattan distances from Pacman to every ghost.

• h2(s) = the number of ghosts times the maximum Manhattan distance between Pacman
and any of the ghosts.

• h3(s) = the number of remaining ghosts.

A heuristic h(s) is admissible if 0 ≤ h(s) ≤ h∗(s) where h∗(s) is the true forward cost. A
heuristic is consistent if h(s) − h(s′) ≤ c(s, s′), where c(s, s′) is the cost from s to s′. Note
that a non-admissible heuristic cannot be consistent.

In the following state s, h1(s) = 2 + 3 + 4 and h2(s) = 3 × 4 are larger than h∗(s) = 4 (not
admissible) and h1(s) − h1(s′) = 3 and h2(s) − h2(s′) = 3 are larger than c(s, s′) = 1 (not
consistent).

12

Conversely, for any state s, h3(s) is a lower bound for the number of remaining turns
(admissible) and h3(s) − h3(s′) is either 0 or 1, which is lower than c(s, s′) = 1 (consistent).

Suppose that Pacman has exactly one less friend than the number of ghosts (P = G).

3. What is the size of the minimal state space representation? Explain your answer.

The state s is fully described with the position of each Pacman and a boolean for each
ghost (eaten or not). The size of the state space is therefore (at most) (M × N)P × 2G.
Alternatively, the position of the Pacmen can also be represented by M × N booleans,
which would result in 2M×N × 2G states. Depending on P , the latter representation could
be smaller or larger.

4. Explain whether each of the following heuristics is admissible, consistent, neither, or both.

• h4(s) = the largest of the Manhattan distances between each Pacman and its closest
ghost.

• h5(s) = the smallest of the Manhattan distances between each Pacman and its closest
ghost.

• h6(s) = the number of remaining ghosts.

• h7(s) = the number of remaining ghosts divided by P .

h4 and h6 could be larger than the number of remaining turns (not admissible, not
consistent). h5 and h7 are admissible and consistent.

13

Quiz
The A∗algorithm, in its graph version is ...

□ always optimal.

□ always optimal if the heuristic is admissible.

■ always optimal if the heuristic is consistent.

□ never optimal when there are cycles.

In a fully observable but stochastic game, if a simple reflex agent is presented the same state
several times, it will ...

■ take the same action every time.

□ take a different action every time.

□ take a different action most of the time.

□ take the same action most of the time.

Which of the following statements about heuristics are true ?

□ h(n) = 0 ∀n can speed up A∗compared to UCS.

□ If a heuristic is admissible, it is guaranteed to be consistent.

□ The average step cost h(n) = 1
#a

∑
a c(n, a, n′) is admissible.

■ The true remaining cost dominates all admissible heuristics.

The poker game is ...

□ discrete, multi-agent and deterministic.

■ partially-observable, stochastic and multi-agent.

□ partially-observable, episodic and single-agent.

□ None of the above.

A goal-based planning agent ...

□ cannot decide which action to take next if the transition model is wrong.

□ ignores the consequences of its actions to take decisions.

■ can be implemented using the greedy search algorithm.

□ need a Markovian system to be optimal.

14

	Path finding
	Search algorithms
	Maze Car (CS188, Spring 2014)
	Heuristics (CS188, Spring 2019)
	Search algorithms
	The hive (CS188, Spring 2019)
	Pacmen (INFO8006, January 2023)

