
Introduction to Arti�cial Intelligence
Lecture 5: Inference in Bayesian networks

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 51

mailto:g.louppe@uliege.be

Exact inference

Inference by enumeration

Inference by variable elimination

Approximate inference

Ancestral sampling

Rejection sampling

Likelihood weighting

Gibbs sampling

Today

―
Image credits: CS188, UC Berkeley. 2 / 51

https://inst.eecs.berkeley.edu/~cs188/

A Bayesian network is a directed acyclic graph in
which:

Each node corresponds to a random variable
.

Each node is annotated with a conditional
probability distribution
that quanti�es the effect of the parents on the
node.

A Bayesian network implicitly encodes the full joint
distribution as the product of the local
distributions:

Bayesian networks

Xi

Xi

P(X ∣parents(X))i i

P (x , ..., x) = P (x ∣parents(X))1 n

i=1

∏
n

i i

―
Image credits: CS188, UC Berkeley. 3 / 51

https://inst.eecs.berkeley.edu/~cs188/

P (b, ¬e, a, ¬j,m) = P (b)P (¬e)P (a∣b, ¬e)P (¬j∣a)P (m, a)

= 0.001 × 0.998 × 0.94 × 0.1 × 0.7

4 / 51

Exact inference

5 / 51

Simple queries:

Conjunctive queries:

Most likely explanation:

Optimal decisions:

Inference
Inference is concerned with the problem computing a marginal and/or a
conditional probability distribution from a joint probability distribution:

P(X ∣e)i

P(X ,X ∣e) = P(X ∣e)P(X ∣X , e)i j i j i

argmax P (q∣e)q

argmax E V (s)a p(s ∣s,a)′ [′]

―
Image credits: CS188, UC Berkeley. 6 / 51

https://inst.eecs.berkeley.edu/~cs188/

Inference by enumeration
Start from the joint distribution .

1. Select the entries consistent with the evidence .

2. Marginalize out the hidden variables to obtain the joint of the query and the
evidence variables:

3. Normalize:

P(Q,E , ...,E ,H , ...,H)1 k 1 r

E , ...,E = e , ..., e1 k 1 k

P(Q, e , ..., e) = P(Q, h , ..., h , e , ..., e).1 k

h ,...,h1 r

∑ 1 r 1 k

Z

P(Q∣e , ..., e)1 k

= P (q, e , ..., e)
q

∑ 1 k

= P(Q, e , ..., e)
Z

1
1 k

7 / 51

Consider the alarm network and the query :

Using the Bayesian network, the full joint entries can be
rewritten as the product of CPT entries:

P(B∣j,m)

P(B∣j,m) = P(B, j,m, e, a)
Z

1

e

∑
a

∑

∝ P(B, j,m, e, a)
e

∑
a

∑

P(B∣j,m) ∝ P(B)P (e)P(a∣B, e)P (j∣a)P (m∣a)
e

∑
a

∑

8 / 51

Inference by enumeration is slow because the whole joint distribution is joined
up before summing out the hidden variables.

―
Image credits: CS188, UC Berkeley. 9 / 51

https://inst.eecs.berkeley.edu/~cs188/

Notice that factors that do not depend on the variables in the summations can
be factored out, which means that marginalization does not necessarily have to
be done at the end:

P(B∣j,m) ∝ P(B)P (e)P(a∣B, e)P (j∣a)P (m∣a)
e

∑
a

∑

= P(B) P (e) P(a∣B, e)P (j∣a)P (m∣a)
e

∑
a

∑

10 / 51

Same complexity as DFS: in space, in time.O(n) O(d)n

11 / 51

Evaluation tree for

Enumeration is still ine�cient: there are repeated computations!

e.g., is computed twice, once for and once for .

These can be avoided by storing intermediate results.

P (b∣j,m)

P (j∣a)P (m∣a) e ¬e

12 / 51

Inference by variable elimination
The variable elimination (VE) algorithm carries out summations right-to-left and
stores intermediate results (called factors) to avoid recomputations. The
algorithm interleaves:

Joining sub-tables

Eliminating hidden variables

―
Image credits: CS188, UC Berkeley. 13 / 51

https://inst.eecs.berkeley.edu/~cs188/

Example

P(B∣j,m) ∝ P(B, j,m)

= P(B) P (e) P(a∣B, e)P (j∣a)P (m∣a)
e

∑
a

∑

= f (B) × f (e) × f (a,B, e) × f (a) × f (a)1
e

∑ 2
a

∑ 3 4 5

= f (B) × f (e) × f (B, e) (sum out A)1
e

∑ 2 6

= f (B) × f (B) (sum out E)1 7

14 / 51

Factors

Each factor is a multi-dimensional array indexed by the values of its
argument variables. E.g.:

Factors are initialized with the CPTs annotating the nodes of the Bayesian
network, conditioned on the evidence.

f i

f4

f (a)4

f (¬a)4

= f (A) = =4 (
P (j∣a)
P (j∣¬a)) (

0.90
0.05)

= 0.90

= 0.5

15 / 51

Join

The pointwise product , or join, of two factors and yields a new factor
.

Exactly like a database join!

The variables of are the union of the variables in and .

The elements of are given by the product of the corresponding elements
in and .

× f1 f2
f3

f3 f1 f2

f3
f1 f2

16 / 51

Elimination

Summing out, or eliminating, a variable from a factor is done by adding up the
sub-arrays formed by �xing the variable to each of its values in turn.

For example, to sum out from , we write:A f (A,B,C)3

f(B,C) = f (a,B,C) = f (a,B,C) + f (¬a,B,C)
a

∑ 3 3 3

= + =(
0.06
0.42

0.24
0.28) (

0.18
0.06

0.72
0.04) (

0.24
0.48

0.96
0.32)

17 / 51

General Variable Elimination algorithm

Query: .

1. Start with the initial factors (the local CPTs, instantiated by the evidence).

2. While there are still hidden variables:

1. Pick a hidden variable

2. Join all factors mentioning

3. Eliminate H

3. Join all remaining factors

4. Normalize

P(Q∣e , ..., e)1 k

H

H

18 / 51

Relevance

Consider the query :

, therefore is irrelevant for the query.

In other words, remains unchanged if we remove from the
network.

Theorem. is irrelevant for unless
.

P(J∣b)

P(J∣b) ∝ P (b) P (e) P (a∣b, e)P(J∣a) P (m∣a)
e

∑
a

∑
m

∑

P (m∣a) = 1∑m M

P(J∣b) M

H P(Q∣e)
H ∈ ancestors({Q} ∪ E)

19 / 51

Complexity

Consider the query .

Work through the two elimination orderings:

What is the size of the maximum factor generated for each of the orderings?

Answer: vs. (assuming boolean values)

P(X ∣y , ..., y)n 1 n

Z,X , ...,X1 n−1

X , ...,X ,Z1 n−1

2n+1 22

20 / 51

The computational and space complexity of variable elimination is determined
by the largest factor.

The elimination ordering can greatly affect the size of the largest factor.

Does there always exist an ordering that only results in small factors? No!

Greedy heuristic: eliminate whichever variable minimizes the size of the factor to be
constructed.

Singly connected networks (polytrees):

Any two nodes are connected by at most one (undirected path).

For these networks, time and space complexity of variable elimination are .O(nd)k

21 / 51

Worst-case complexity?

3SAT is a special case of inference:

CSP:

; ;

;

(u ∨ u ∨ u) ∧ (¬u ∨ ¬u ∨ u) ∧ (u ∨ ¬u ∨ u)1 2 3 1 2 3 2 3 4

P (U = 0) = P (U = 1) = 0.5i i

C = U ∨ U ∨ U1 1 2 3 C = ¬U ∨ ¬U ∨ U2 1 2 3 C = U ∨ ¬U ∨ U3 2 3 4

D = C1 1 D = D ∧ C2 1 2

Y = D ∧ C2 3

22 / 51

If we can answer whether , then we answer whether 3SAT has a
solution.

By reduction, inference in Bayesian networks is therefore NP-complete.

There is no known e�cient probabilistic inference algorithm in general.

P (Y = 1) > 0

23 / 51

Approximate inference

24 / 51

Exact inference is intractable for most probabilistic models of practical interest.
(e.g., involving many variables, continuous and discrete, undirected cycles, etc).

25 / 51

Solution

Abandon exact inference and develop approximate but faster inference
algorithms:

Sampling methods: produce answers by repeatedly generating random
numbers from a distribution of interest.

Variational methods: formulate inference as an optimization problem.

Belief propagation methods: formulate inference as a message-passing
algorithm.

Machine learning methods: learn an approximation of the target distribution
from training examples.

26 / 51

Sampling methods
Basic idea:

Draw samples from a sampling distribution .

Compute an approximate posterior probability .

Show this approximate converges to the true probability distribution .

Why sampling?

Generating samples is often much faster than computing the right answer (e.g.,
with variable elimination).

N S

P̂

P

―
Image credits: CS188, UC Berkeley. 27 / 51

https://inst.eecs.berkeley.edu/~cs188/

Sampling
How to sample from the distribution of a discrete variable ?

Assume discrete outcomes with probability .

Assume sampling from the uniform is possible.

e.g., as enabled by a standard rand() function.

Divide the interval into regions, with region having size .

Sample and return the value associated to the region in which
 falls.

X

k x , ..., x1 k P (x)i

U(0, 1)

[0, 1] k i P (x)i

u ∼ U(0, 1)
u

28 / 51

P (C)

C P

red 0.6

green 0.1

blue 0.3

0 ≤ u < 0.6

0.6 ≤ u < 0.7

0.7 ≤ u < 1

→ C = red

→ C = green

→ C = blue

―
Image credits: CS188, UC Berkeley. 29 / 51

https://inst.eecs.berkeley.edu/~cs188/

Prior sampling
Sampling from a Bayesian network, without observed evidence:

Sample each variable in turn, in topological order.

The probability distribution from which the value is sampled is conditioned
on the values already assigned to the variable's parents.

30 / 51

―
Image credits: CS188, UC Berkeley. 31 / 51

https://inst.eecs.berkeley.edu/~cs188/

32 / 51

32 / 51

32 / 51

32 / 51

32 / 51

32 / 51

32 / 51

Example

We will collect a bunch of samples from the Bayesian network:

If we want to know :

We have counts

Normalize to obtain

 will get closer to the true distribution as we generate more
samples.

c, ¬s, r,w
c, s, r,w
¬c, s, r, ¬w
c, ¬s, r,w
¬c, ¬s, ¬r,w

P(W)

⟨w : 4, ¬w : 1⟩

(W) = ⟨w : 0.8, ¬w : 0.2⟩P̂

(W)P̂ P(W)

33 / 51

Analysis

The probability that prior sampling generates a particular event is

i.e., the Bayesian network's joint probability.

Let denote the number of samples of an event. We de�ne the
probability estimator

S (x , ..., x) = P (x ∣parents(X)) = P (x , ..., x)PS 1 n

i=1

∏
n

i i 1 n

N (x , ..., x)PS 1 n

(x , ..., x) = N (x , ..., x)/N .P̂ 1 n PS 1 n

34 / 51

Then,

Therefore, prior sampling is consistent:

(x , ..., x)
N→∞
lim P̂ 1 n = N (x , ..., x)/N

N→∞
lim PS 1 n

= S (x , ..., x)PS 1 n

= P (x , ..., x)1 n

P (x , ..., x) ≈ N (x , ..., x)/N1 n PS 1 n

35 / 51

Rejection sampling

Using prior sampling, an estimate can be formed from the proportion of
samples agreeing with the evidence among all samples agreeing with the
evidence.

(x∣e)P̂

x e

―
Image credits: CS188, UC Berkeley. 36 / 51

https://inst.eecs.berkeley.edu/~cs188/

37 / 51

Analysis

Let consider the posterior probability estimator formed by rejection
sampling:

Therefore, rejection sampling is consistent.

The standard deviation of the error in each probability is , where
is the number of samples used to compute the estimate.

Problem: many samples are rejected!

Hopelessly expensive if the evidence is unlikely, i.e. if is small.

Evidence is not exploited when sampling.

(x∣e)P̂

(x∣e)P̂ = N (x, e)/N (e)PS PS

= /
N

N (x, e)PS

N

N (e)PS

≈ P (x, e)/P (e)

= P (x∣e)

O(1/)n n

P (e)

38 / 51

Likelihood weighting
Idea: clamp the evidence variables, sample the rest.

Problem: the resulting sampling distribution is not consistent.

Solution: weight by probability of evidence given parents.

―
Image credits: CS188, UC Berkeley. 39 / 51

https://inst.eecs.berkeley.edu/~cs188/

40 / 51

41 / 51

41 / 51

41 / 51

41 / 51

41 / 51

Analysis

The sampling probability for an event with likelihood weighting is

where the product is over the non-evidence variables. The weight for a given
sample is

where the product is over the evidence variables.

The weighted sampling probability is

S (x, e) = P (x ∣parents(X)),WS
i=1

∏
l

i i

x, e

w(x, e) = P (e ∣parents(E)),
i=1

∏
m

i i

S (x, e)w(x, e)WS = P (x ∣parents(X)) P (e ∣parents(E))
i=1

∏
l

i i

i=1

∏
m

i i

= P (x, e)

42 / 51

The estimated posterior probability is computed as follows:

Hence likelihood weighting returns consistent estimates.

(x∣e)P̂ ∝ N (x, e)w(x, e)WS

∝ S (x, e)w(x, e)WS

∝ P (x, e)

∝ P (x∣e).

43 / 51

Likelihood weighting is helpful:
The evidence is taken into account to generate a sample.

More samples will re�ect the state of the world suggested by the evidence.

Likelihood weighting does not solve all problems:
Performance degrades as the number of evidence variable increases.

The evidence in�uences the choice of downstream variables, but not upstream ones.

Ideally, we would like to consider the evidence when we sample each and every variable.

44 / 51

Inference by Markov chain simulation
Markov chain Monte Carlo (MCMC) algorithms are a family of sampling
algorithms that generate samples through a Markov chain.

They generate a sequence of samples by making random changes to a
preceding sample, instead of generating each sample from scratch.

Helpful to think of a Bayesian network as being in a particular current state
specifying a value for each variable and generating a next state by making
random changes to the current state.

Metropolis-Hastings is one of the most famous MCMC methods, of which
Gibbs sampling is a special case.

45 / 51

Gibbs sampling

Start with an arbitrary instance consistent with the evidence.

Sample one variable at a time, conditioned on all the rest, but keep the
evidence �xed.

Keep repeating this for a long time.

x , ..., x1 n

46 / 51

Both upstream and downstream variables condition on evidence.

In contrast, likelihood weighting only conditions on upstream evidence, and
hence the resulting weights might be very small.

47 / 51

1) Fix the
evidence

2) Randomly
initialize the other
variables

Example

3) Repeat

Choose a non-evidence variable .

Resample from .

X

X P(X ∣all other variables)

48 / 51

Demo

See code/lecture5-gibbs.ipynb.

49 / 51

Rationale

The sampling process settles into a dynamic equilibrium in which the long-run
fraction of time spent in each state is exactly proportional to its posterior
probability.

See 14.5.2 for a technical proof.

50 / 51

Summary
Exact inference by variable elimination .

NP-complete on general graphs, but polynomial on polytrees.

space = time, very sensitive to topology.

Approximate inference gives reasonable estimates of the true posterior
probabilities in a network and can cope with much larger networks than can
exact algorithms.

Likelihood weighting does poorly when there is lots of evidence.

Likelihood weighting and Gibbs sampling are generally insensitive to topology.

Convergence can be slow with probabilities close to 1 or 0.

Can handle arbitrary combinations of discrete and continuous variables.

51 / 51

The end.

51 / 51

