
Introduction to Arti�cial Intelligence
Lecture: Constraint satisfaction problems

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 54

mailto:g.louppe@uliege.be

Hmmm, let me think...

2 / 54

(...)

2 / 54

(some time later)

2 / 54

Solution found! [Can we do better?]

2 / 54

Today
Constraint satisfaction problems:

Exploiting the representation of a state to accelerate search.

Backtracking.

Generic heuristics.

Logical agents

Propositional logic for reasoning about the world.

... and its connection with CSPs.

―
Image credits: CS188, UC Berkeley. 3 / 54

https://inst.eecs.berkeley.edu/~cs188/

Constraint satisfaction problems

4 / 54

Motivation
In standard search problems:

States are evaluated by domain-speci�c heuristics.

States are tested by a domain-speci�c function to determine if the goal is
achieved.

From the point of view of the search algorithms however, states are atomic.

Instead, if states have a factored representation, then the structure of states
can be exploited to improve the e�ciency of the search.

5 / 54

Constraint satisfaction problems
Constraint satisfaction problem solvers take advantage of factored state
representations and use general-purpose heuristics to solve complex
problems.

CSPs are specialized to a family of search sub-problems.

Main idea: eliminate large portions of the search space all at once, by
identifying combinations of variable/value that violate constraints.

6 / 54

Formally, a constraint satisfaction problem (CSP) consists of three components
, and :

 is a set of variables, ,

 is a set of domains, , one for each variable,

 is a set of constraints that specify allowable combinations of values.

X D C

X {X , ...,X }1 n

D {D , ...,D }1 n

C

7 / 54

Example: Map coloring

8 / 54

Variables:

Domains: for each variable.

Constraints:

Implicit:

Explicit:

Solutions are assignments of values to the variables such that constraints
are all satis�ed.

e.g.,

X = {WA,NT,Q,NSW,V, SA, T}

D = {red, green, blue}i

C = {SA ≠ WA, SA ≠ NT, SA ≠ Q, ...}

WA ≠ NT

(WA,NT) ∈ {{red, green}, {red, blue}, ...}

{WA = red, NT = green, Q = red, SA = blue,
NSW = green, V = red, T = green}

9 / 54

Constraint (hyper)graph

Nodes = variables of the problems

Edges = constraints in the problem involving the variables associated to the
end nodes.

General purpose CSP algorithms use the graph structure to speedup
search.

e.g., Tasmania is an independent subproblem. 10 / 54

Example: Cryptarithmetic

Variables:

Domains:

Constraints:

...

{T ,W ,O,F ,U ,R,C ,C ,C }1 2 3

D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}i

alldiff(T ,W ,O,F ,U ,R)

O + O = R+ 10 × C1

C +W +W = U + 10 × C1 2

11 / 54

Example: Sudoku

Variables: each (open) square

Domains:

Constraints:

9-way for each column

9-way for each row

9-way for each region

D = {1, 2, 3, 4, 5, 6, 7, 8, 9}i

alldiff

alldiff

alldiff

12 / 54

Example: The Waltz algorithm

Procedure for interpreting 2D line drawings of solid polyhedra as 3D objects.
Early example of an AI computation posed as a CSP.

CSP formulation:

Each intersection is a variable.

Adjacent intersections impose constraints on each
other.

Solutions are physically realizable 3D objects.
―
Image credits: CS188, UC Berkeley. 13 / 54

https://inst.eecs.berkeley.edu/~cs188/

Variations on the CSP formalism
Discrete variables

Finite domains

Size means complete assignments.

e.g., boolean CSPs, including the SAT boolean satis�ability problem (NP-complete).

In�nite domains

e.g., job scheduling, variables are start/end days for for each job.

need a constraint language, e.g. .

Solvable for linear constraints, undecidable otherwise.

Continuous variables

e.g., precise start/end times of experiments.

Linear constraints solvable in polynomial time by LP methods.

d O(d)n

start + 5 ≤ start1 2

14 / 54

Varieties of constraints
Unary constraint involve a single variable.

Equivalent to reducing the domain, e.g. .

Binary constraints involve pairs of variables, e.g. .

Higher-order constraints involve 3 or more variables.

Preferences (soft constraints)

e.g., red is better than green.

Often representable by a cost for each variable assignment.

Results in constraint optimization problems.

(We will ignore those in this course.)

SA ≠ green

SA ≠ WA

15 / 54

Assignment problems

e.g., who teaches what class

Timetabling problems

e.g., which class is offered when and
where?

Hardware con�guration

Spreadsheets

Transportation scheduling

Factory scheduling

Circuit layout

... and many more

Real-world examples

Notice that many real-world problems involve real-valued variables.

―
Image credits: CS188, UC Berkeley. 16 / 54

https://inst.eecs.berkeley.edu/~cs188/

Constraint Programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming:

the user states the problem, the computer solves it.
(Eugene Freuder)

Constraint programming

Constraint programming is a programming paradigm in which the user
speci�es the program as a CSP. The resolution of the problem is left to the
computer.

Examples:

Prolog

ECLiPSe

17 / 54

Solving CSPs

18 / 54

Standard search formulation
CSPs can be cast as standard search problems.

For which we have solvers, including DFS, BFS or A*.

States are partial assignments:

The initial state is the empty assignment .

Actions: assign a value to an unassigned variable.

Goal test: the current assignment is complete and satis�es all constraints.

This algorithm is the same for all CSPs!

{}

19 / 54

What would BFS or DFS do? What problems does naive search have?

For variables of domain size :

 at depth ;

we generate a tree with leaves even if there are only possible
assignments!

n d

b = (n− l)d l

n!dn dn

20 / 54

Backtracking search
Backtracking search is a canonical uninformed algorithm for solving CSPs.

Idea 1: One variable at a time:

The naive application of search algorithms ignores a crucial property: variable assignments
are commutative. Therefore, �x the ordering.

 then is the same as then .

One only needs to consider assignments to a single variable at each step.

 and there are leaves.

Idea 2: Check constraints as you go:
Consider only values which do not con�ict with current partial assignment.

Incremental goal test.

WA = red NT = green NT = green WA = red

b = d dn

21 / 54

22 / 54

23 / 54

Improving backtracking

Can we improve backtracking using general-purpose ideas, without domain-
speci�c knowledge?

Ordering:

Which variable should be assigned next?

In what order should its values be tried?

Filtering: can we detect inevitable failure early?

Structure: can we exploit the problem structure?

24 / 54

Variable ordering

Minimum remaining values: Choose the variable with the fewest legal
values left in its domain.

Also known as the fail-�rst heuristic.

Detecting failures quickly is equivalent to pruning large parts of the search tree.

25 / 54

Value ordering

Least constraining value: Given a choice of variable, choose the least
constraining value.

i.e., the value that rules out the fewest values in the remaining variables.

Exercise
Why should variable selection be fail-�rst but value selection be fail-last?

26 / 54

Filtering: Forward checking

Keep track of remaining legal values for unassigned variables.

Whenever a variable is assigned, and for each unassigned variable that is connected to

 by a constraint, delete from 's domain any value that is inconsistent.

Terminate search when any variable has no legal value left.

X Y

X Y

27 / 54

Filtering: Constraint propagation

Forward checking propagates information assigned to unassigned variables,
but does not provide early detection for all failures:

 and cannot both be blue!

Constraint propagation repeatedly enforces constraints locally.

NT SA

28 / 54

Arc consistency

An arc is consistent if and only if for every value in the domain of
 there is some value in the domain of that satis�es the associated

binary constraint.

Forward checking enforcing consistency of arcs pointing to each new
assignment.

This principle can be generalized to enforce consistency for all arcs.

X → Y x

X y Y

⇔

29 / 54

Exercise
When in backtracking shall this procedure be called?

30 / 54

Structure

Tasmania and mainland are independent subproblems.

Any solution for the mainland combined with any solution for Tasmania yields a solution for
the whole map.

Independence can be ascertained by �nding connected components of the
constraint graph.

31 / 54

Time complexity

Assume each subproblem has variables out of in total. Then .

E.g., , , .

 4 billion years at 10 million nodes/sec.

 0.4 seconds at 10 million nodes/sec.

c n O(d)
c
n c

n = 80 d = 2 c = 20

2 =80

4 × 2 =20

32 / 54

Tree-structured CSPs

Algorithm for tree-structured CSPs:

Order: choose a root variable, order variables so that parents precede children (topological
sort).

Remove backward:

for down to , enforce arc consistency of .

Assign forward:

for to , assign consistently with its .

Time complexity:

Compare to general CSPs, where worst-case time is .

i = n 2 parent(X) → Xi i

i = 1 n Xi parent(X)i

O(nd)2

O(d)n

33 / 54

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains.

Cutset conditioning:

Assign (in all ways) a set of variables such that the remaining constraint graph is a tree.

Solve the residual CSPs (tree-structured).

If the residual CSP has a solution, return it together with the assignment for .

S

S

34 / 54

Logical agents

35 / 54

The rational thinking approach to arti�cial
intelligence is concerned with the study of
irrefutable reasoning processes. It ensures
that all actions performed by an agent are
formally provable from inputs and prior
knowledge.

The Greek philosopher Aristotle was one of the
�rst to attempt to formalize rational thinking.
His syllogisms provided a pattern for
argument structures that always yield correct
conclusion when given correct premises.

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

(Aristotle, 384-322 BC)

The logicist tradition

36 / 54

Logicians of the 19th century developed a precise notation for statements
about all kinds of objects in the world and relationships among them.

By 1965, programs existed that could, in principle, solve any solvable
problem described in logical notation.

The logicist tradition within AI hopes to build on such programs to create
intelligent systems.

37 / 54

The Wumpus world

38 / 54

PEAS description

Performance measure:

+1000 for climbing out of the cave with gold;

-1000 for falling into a pit or being eaten by the wumpus;

-1 per step.

Environment:

 grid of rooms;

The agent starts in the lower left square labeled , facing right;

Locations for gold, the wumpus and pits are chosen randomly from squares other than the start square.

Actuators:

Forward, Turn left by ° or Turn right by °.

Sensors:

Squares adjacent to wumpus are smelly;

Squares adjacent to pit are breezy;

Glitter if gold is in the same square;
Gold is picked up by re�ex, and cannot be dropped.

You bump if you walk into a wall.

The agent program receives the percept .

4 × 4

[1, 1]

90 90

[Stench, Breeze, Glitter, Bump]

39 / 54

Wumpus world characterization

Deterministic: Yes, outcomes are exactly speci�ed.

Static: Yes, Wumpus and pits dot not move.

Discrete: Yes.

Single-agent: Yes, Wumpus is essentially a part of the environment.

Fully observable: No, only local perception.

This is our �rst example of partial observability.

Episodic: No, what was observed before is very useful.

The agent need to maintain a model of the world and to update this model upon
percepts.

We will use logical reasoning to overcome the initial ignorance of the agent.

40 / 54

Exploring the Wumpus world (1)

(a) Percept =

(b) Percept =

[None, None, None, None]

[None, Breeze, None, None]

41 / 54

Exploring the Wumpus world (2)

(a) Percept =

(b) Percept =

[Stench, None, None, None]

[Stench, Breeze, Glitter, None]

42 / 54

Logical agents
Most useful in non-episodic, partially observable environments.

Logic (knowledge-based) agents combine:

A knowledge base (): a list of facts that are known to the agent.

Current percepts.

Hidden aspects of the current state are inferred using rules of inference.

Logic provides a good formal language for both

Facts, encoded as axioms.

Rules of inference.

KB

43 / 54

Propositional logic

Syntax

The syntax of propositional logic de�nes allowable sentences.

The syntax of propositional logic is formally de�ned by the following
grammar:

44 / 54

Semantics

In propositional logic, a model is an assignment of truth values for every
proposition symbol.

E.g., if the sentences of the knowledge base make use of the symbols , and , then

one possible model is .

The semantics for propositional logic speci�es how to (recursively)
evaluate the truth value of any complex sentence, with respect to a model

, as follows:

The truth value of a proposition symbol is speci�ed in .

 is true iff is false;

 is true iff and are true;

 is true iff either or is true;

 is true unless is true and is false;

 is true iff and are both true of both false.

P1 P2 P3
m = {P = False,P = True,P = True}1 2 3

m

m

¬P P

P ∧Q P Q

P ∨Q P Q

P ⇒ Q P Q

P ⇔ Q P Q

45 / 54

Let be true if there is a pit in .

Let be true if there is a breeze in .

Examples:

There is no pit in :

Pits cause breezes in adjacent squares:

These are true in all wumpus worlds.

Breeze percept for the �rst two squares, for
the speci�c world we consider:

Wumpus world sentences

Pi,j [i, j]

Bi,j [i, j]

[1, 1]

R : ¬P .1 1,1

R : B ⇔ (P ∨ P).2 1,1 1,2 2,1

R : B ⇔ (P ∨ P ∨ P).3 2,1 1,1 2,2 3,1

R : ¬B .4 1,1

R : B .5 2,1
46 / 54

Entailment
We say a model satis�es a sentence if is true in .

 is the set of all models that satisfy .

 iff .

We say that the sentence entails the sentence .

 is true in all models where is true.

That is, follows logically from .

In other words, entailment enables logical inference.

m α α m

M(α) α

α ⊨ β M(α) ⊆ M(β)

α β

β α

β α

47 / 54

Wumpus models

Let us consider possible models for assuming only pits and a reduced
Wumpus world with only 5 squares and pits.

We consider the situation after:

detecting nothing in ,

moving right, sensing breeze in .

Exercise
How many models are there?

KB

[1, 1]

[2, 1]

48 / 54

All 8 possible models in the reduced Wumpus world.

The knowledge base contains all possible Wumpus worlds consistent
with the observations and the physics of the world.

KB

49 / 54

Entailments

 = " is safe". Does entails ?

 since .
This proof is called model checking because it enumerates all possible models to check

whether is true in all models where is true.

α1 [1, 2] KB α1

KB ⊨ α1 M(KB) ⊆ M(α)1

α1 KB

50 / 54

 = " is safe". Does entails ?

 since .

We cannot conclude whether is safe (it may or may not).

α2 [2, 2] KB α2

KB ⊭ α2 M(KB) ⊈ M(α)2

[2, 2]

51 / 54

Unsatis�ability theorem

A sentence is unsatis�able iff .

i.e., there is no assignment of truth values such that is true.

Proving by checking the unsatis�ability of corresponds to
the proof technique of reductio ad absurdum.

Checking the satis�ability of a sentence can be cast as CSP!
More e�cient than enumerating all models, but remains NP-complete.

Alternatively, propositional satis�ability (SAT) solvers can be used instead of CSPs. These are
tailored for this speci�c problem. Many of them are variants of backtracking.

α ⊨ β iff (α ∧ ¬β) is unsatisfiable

γ M(γ) = {}

γ

α ⊨ β α ∧ ¬β

γ

52 / 54

Limitations
Representation of informal knowledge is di�cult.

Hard to de�ne provable plausible reasoning.

Combinatorial explosion (in time and space).

Logical inference is only a part of intelligence.

53 / 54

Summary
Constraint satisfaction problems:

States are represented by a set of variable/value pairs.

Backtracking, a form of depth-�rst search, is commonly used for solving CSPs.

The complexity of solving a CSP is strongly related to the structure of its constraint graph.

Logical agents:

Intelligent agents need knowledge about the world in order to reach good decisions.

Logical inference can be used as tool to reason about the world, in particular to infer parts that
are not observable.

The inference problem can be cast as the problem of determining the unsatis�ability of a formula.

This in turn can be cast as a CSP.

54 / 54

The end.

54 / 54

