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Teaser

https://www.youtube.com/watch?v=kopoLzvh5jY
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RL basics: The environment

Markov decision process (MDP)

Figure: RL environment [1]

Composed of:

A set of states s ∈ S
A set of action a ∈ A
Transition function:
st+1 ∼ P(st+1|st , at)
Reward function:
rt = R(st+1, st , at)

Policy: π(at |st)

The agent goal: To maximize its total expected sum of (discounted)
rewards

∑∞
t=0 γ

trt with γ ∈ [0, 1), obtained with the optimal policy π∗.

1Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA.

Pascal Leroy Emergent Tool Use from Multi-Agent Interaction https://openai.com/blog/emergent-tool-use/April 2020 4 / 41

https://openai.com/blog/emergent-tool-use/


RL basics: Paradigms

Two main learning paradigms in RL:

Model based: to learn a model of the transition and reward functions
and use this model to find the best policy.

Model free: to learn directly the policy without modelling the
environment.

Two main families in model free:

Value based: to predict the value of each action and take the best
one.

Policy based: to compute the probabilities of taking each action.
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RL basics: Value Based

Value Based

State Value of a policy π:

V π(st) = Eπ [rt + γV π(st+1)|st ]

State-Action Value of a policy π:

Qπ(st , at) = Eπ [rt + γQπ(st+1, at+1)|st , at ]

The optimal policy is:

π∗(st) = argmax
a

Qπ∗(st , a)
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RL basics: Value Based

The optimal value functions obey the Bellman equation:

V (st) = max
a

∑
st+1

P(st+1|st , a)(rt + γV (st+1))

Q(st , at) =
∑
st+1

P(st+1|st , at)(rt + γV (st+1))

=
∑
st+1

P(st+1|st , at)(rt + γmax
at+1

Q(st+1, at+1))

Note that we consider that the agent takes optimal action.
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RL basics: Value Based

Tabular Q-Learning and Q-value iteration: find optimal Q-values.

By running the environment, obtain transitions (st , at , rt , st+1) where
st+1 is the next state after taking the action at in state st . rt is the
reward of this transition.

Store the Q-values in a table (one cell for each state-ction pair),
initialize these to 0.

For each transition, update the table:

Qk+1(st , at) = (1− α)Qk(st , at) + α
(
rt + γmax

a
Qk(st+1, a)

)
α being the learning rate.

Problem? Intractable if state space or action space is very large

→ Approximate Q-values with neural network.
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RL basics: Deep Q-Learning

Replay buffer: It is a collection of transitions (st , at , rt , st+1).

Sampling N transitions allows to update the network, minimizing the
following loss:

L(θ) =
N∑
i=0

[ri + γmax
a′

Q(si+1, a
′; θ′)− Q(si , ai ; θ)]2

θ′ denotes the parameters of the target network, a copy of θ that is
periodically updated.

Ideally, transition samples should not be consecutive in order to not
bias the update.
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RL basics: Policy based

Policy based

We denote

πθ(at |st), the policy defined by a neural network with parameters θ.
τ = (s0, a0, r0, s1, a1, .., sT ), a trajectory.
r(τ) =

∑
t rt , the total reward in a trajectory.

Goal: Maximise J(θ) = Eτ∼πθ r(τ)

How? Gradient ascent!

θt+1 = θt + α∇θJ(θt)

Skipping the math:

∇θJ(θ) = Eτ∼πθ

[
r(τ)

(
T∑
t=0

∇θ log πθ(at , st)

)]
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RL basics: Reinforce and baseline

Use the discounted sum of reward Gt(τ) =
∑T

j=0 γ
j rt+j

∇θJ(θ) = Eτ∼πθ

[(
T∑
t

Gt(τ)∇θ log πθ(at , st)

)]

This is called REINFORCE

Smaller variance with a baseline:

∇θJ(θ) = Eτ∼πθ

[(
T∑
t

(Gt(τ)− b)∇θ log πθ(at , st)

)]

A good example of baseline is the average reward.
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RL basics: Q Actor-Critic

Forget about the baseline for now.

Value-function reminder:

Q(st , at) = E(rt ,st+1,...,sT ) [Gt(τ)]

Back to our gradient, it is possible to approximate the Q-function
with a set of parameter w .

∇θJ(θ) = Eτ∼πθ

[(
T∑
t

Gt(τ)∇θ log πθ(at , st)

)]

= Eτ∼πθ

[(
T∑
t

Qw (st , at)∇θ log πθ(at , st)

)]

→ Q Actor-Critic: In addition,
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RL basics: Advantage Actor-Critic

Back to the baseline:

What about a baseline that depends ONLY on the state?

→ Learn the Value function to be used as the baseline!

Advantage value:

A(st , at) = Qw (st , at)− Vv (st)

= rt + γVv (st+1)− Vv (st)

Actor: learns the policy, Critic: learns the advantage

−→ ∇θJ(θ) = Eτ∼πθ

[(
T∑
t

Av (st , at)∇θ log πθ(at , st)

)]
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RL basics: Improvements

Two improvements of interest:

PPO: Proximal Policy Optimization

Avoid large policy updates by penalizing large changes of the policy.

GAE: Generalised Advantage Estimator

Compute an advantage as a sum of temporal differences of a future
time horizon.
Improve the sample efficiency of policy gradient methods.
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Summary

We can use a neural network to approximate the values of actions in
order to choose the best one.

We can use a neural network to parametrize a policy, which is
updated using policy gradient toward the optimal policy.

It is possible to learn both the policy and the value of actions taken
by this policy with the Actor-Critic.

There are techniques that reduce variance in the policy updates.
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Multi-Agent environment

Partially observable multi-agent environment → MDP but Markov
Game

N agents

Set of state S
Set of all agents observations: O1, ...,ON

Set of all agents actions: A1, ...,AN

Transition function: S ×A1...AN → S (can still be a distribution)

Rewards: S ×A1...AN → RN

The goal of each agent remains the same: maximize its own
(discounted) reward.
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Hide and Seek environment

Hiders (blue) trie to avoid line
of sight of the Seekers (red).

Objects that can be grab or
lock.

Preparation phase: only the
hiders can perform action in the
beginning.

Team based reward

Hiders: +1 if hidden, -1 if seen.

Seekers: opposite.

0 if no one is seen by the
seekers.

Time limit: 240
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Hide and Seek environment

Action space:
Move: discretized forces along x and y axis and torque around their z
axis.
Grab or lock the closest object. 2 binaries. (Only object in front of
them within a small range)

Grab: the object is bound to the agent while boolean is True.
Lock: the object is locked and cannot be moved. Unlocking is available
if the agent is part of the agent team that has locked the object.

Observation space:
Position, velocity and size(or objects), in a 135 degree cone in front of
the agent.
”LIDAR”: 30 range sensors around the agent.

Go to the blog!

Figure: https://openai.com/blog/emergent-tool-use/
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Hide and Seek scenarios

Normal environment:

1 to 3 hiders, 1 to 3 seekers

3 to 9 boxes (at least 3
elongated)

2 movable ramps

random walls and rooms

random initial position
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Hide and Seek scenarios

Quadrant environment:

2 hiders, 2 seekers

2 boxes inside the room

Seekers spawn outside the room

1 movable ramp that cannot be
blocked

1 fixed room with 1 or 2 random
doors
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Hide and Seek optimization

Actor-Critic → 2 sets of parameters.

The actor network, optimised with PPO and GAE, produces an action
distribution based on the agent observations.

The critic network that predicts the discounted future returns.

Use centralize training, decentralized execution (CTDE).

At training time: the critic has access to the full state to lean a
centralized value function.
At execution time: the policy network is used normally.

Self-play: each agent acts independently but share the same network
parameters.

5% chance of using a past policy version to improve robustness.

Pascal Leroy Emergent Tool Use from Multi-Agent Interaction https://openai.com/blog/emergent-tool-use/April 2020 21 / 41

https://openai.com/blog/emergent-tool-use/


Hide and Seek architecture

Pascal Leroy Emergent Tool Use from Multi-Agent Interaction https://openai.com/blog/emergent-tool-use/April 2020 22 / 41

https://openai.com/blog/emergent-tool-use/


Hide and Seek entity-centric observations

The observation is composed of different entities: agents, boxes,
ramps.

The first step is to embed each entity. Same objects are embedded
with the same parameters.

Self information: the concatenation of Lidar (that went through a
circular 1-D convolution) with position and velocity of the agent are
embedded with a fully connected layer.

There are three other entities. Each one is concatenated with the
embed of the self information before their own embed:

1 Other agents information (N − 1): position and velociity.
2 Box information (Number of boxes): position, velocity and size.
3 Ramp information (Number of ramps): position and velocity.

The number of these entities varies depending on the scenario.
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Hide and Seek Policy optimization

The second step is to pass all embedded entities through a residual
self-attention block (unobservable entities are masked away).

Attention mechanisms allow to capture object-level information.

”A self-attention module takes in n inputs, and returns n outputs.
The self-attention mechanism allows the inputs to interact with each
other (“self”) and find out who they should pay more attention to
(“attention”). The outputs are aggregates of these interactions and
attention scores.”

The third step is to concatenate the average-pool entities
embedding with self information.

The fourth step is to pass through a LSTM.

The last step is to pass through the three sperate heads (one for
each action type)

Full parameter values are detailed in the paper.
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Hide and Seek Emergent behavior

In both scenarios, different strategies emerge as the agents train →
autocurriculum. They can be seen on the blog.
In the paper, they insist on the fact that there is no incentives for
agents to interact with objects, this is only a result of autocurriculum
induced by the competition.
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Hide and Seek Emergent behavior

Tool interaction

Agents learn to divide the labor: Against box surfing, 2 and 3 hiders
lock 25% and 36% more boxes than a single hider.

It is possible to track the stages of emergent policy with the
interaction of tools in the environment.
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Hide and Seek Emergent behavior

Scale matters!

In the Figure, the number of episode (blue) and time (orange) to
reach stage 4 (ramp defense) in term of batch size.

The size of batch size is the number of transition chunks.

The model uses 1.6 million parameters.
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Hide and Seek Evaluation

Reward in Multi-Agent is not sufficient. Are agents improving evenly
or have they stagnated?

ELO score (or Trueskill) allows to establish a ranking and measure
improvement compared to other policies. However, it does not
differentiate adaptation and improvement of already learned skills.

Their propose two evaluations scheme.
1 Comparison to intrinsic motivation.
2 Inteligence tests: transfer and fine-tuning.
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Hide and Seek Intrinsic motivation

Goal? Compare behavior learned in Hide and Seek with common
unsupervised exploration techniques.

Underlying idea: Can agent behave like human with these
unsupervised exploration methods.

Count based exploration: the agent receives reward when visiting
states that has not been visited much.

Very dependent of state representation.

Result: The learned behavior is very not human-like.

See blog results.
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Hide and Seek Intelligence tests

Goal? Use transfer learning to evaluate network parameters on five
new tasks.
Three configuration:

1 Trained from scratch
2 Pre-trained with Hide and Seek and fine tuned.
3 Pre-trained with count based and fine tuned.

These tests include supervised learning and reinforcement learning but
are single-agent:

1 Object counting
2 Lock and return
3 Sequential lock
4 Construction from blueprint
5 Shelter construction

Notes:
Same spaces and observation (fake hiders)
Object counting task: the action heads are replaced by a classification
head (7-classes representing whether 0 through 6 boxes have gone to
the left)
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Hide and Seek Intelligence tests

Results:

Pre-trained with Hide and Seek configuration is better on Lock and
return, Sequential lock and Construction from blueprint.

Pre-trained with count-based configuration is better on Object
counting.

Pre-trained with Hide and Seek configuration achieves the same
results as the trained from scratch configuration on Shelter
construction but sligthly slower.
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More intelligence tests

Intelligence tests are performed at different phases of emergence.

Improves on navigation and memory as it progresses.

Object counting is transient.

Performance on manipulation tasks (constructions) is uncorrelated to
the phases. The most surprising: policy from phase 1 performs
comparably well to others.
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Alternative games

Hide and Seek with food reward.

Can eat food if:

after preparation phase.
hiders not seen by seekers.
hider close and visible to the food.

Figure: Hide and Seek with food reward.
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Alternative games

Hide and Seek with food reward: Results.

Incentivized to build forts around food.

Four levels of skill progression (see Figure)

Figure: Hide and Seek with food reward results

Pascal Leroy Emergent Tool Use from Multi-Agent Interaction https://openai.com/blog/emergent-tool-use/April 2020 34 / 41

https://openai.com/blog/emergent-tool-use/


Alternative games

Hide and Seek with dynamic food.

Only one food that disappear when eaten.

It reappears in the center of the map (in a square of length 1/5 of
game area size).

The hidders need to learn to build large forts.

emerge after 45 billions samples.

if food region ratio is 1/6, emerge after 15 billions samples.

if food region ratio is 1/4, the hiders ignore food and protect
themselves.
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Conclusions

Simple game rules and multi-agent competition can induce agents to
learn complex strategies and skills.

Intelligent tests, using transfer learning, can be used to evaluate
learning progress and to compare agents in a same domain.

Multi-agent autocurricula can lead to physically grounded and
human-relevant behavior (in opposition to unsupervised exploration
techniques).
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Future work

Reduce the sample complexity: better policy learning algorithms,
architecture and also reward functions.

Generate environment without unwanted behaviors.
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Surprising behaviors

See the blog.

Pascal Leroy Emergent Tool Use from Multi-Agent Interaction https://openai.com/blog/emergent-tool-use/April 2020 38 / 41

https://openai.com/blog/emergent-tool-use/


References

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D. and Riedmiller, M. (2013). Playing Atari with Deep
Reinforcement Learning. ,

Schulman, John ; Wolski, Filip ; Dhariwal, Prafulla ; Radford, Alec ;
Klimov, Oleg. (2017). Proximal Policy Optimization Algorithms.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter
Abbeel (2015) High-Dimensional Continuous Control Using
Generalized Advantage Estimation

Carlos Diuk, Andre Cohen, and Michael L. Littman. 2008. An
object-oriented representation for efficient reinforcement learning.

Pascal Leroy Emergent Tool Use from Multi-Agent Interaction https://openai.com/blog/emergent-tool-use/April 2020 39 / 41

https://openai.com/blog/emergent-tool-use/


References

https://towardsdatascience.com/policy-gradients-in-a-nutshell-
8b72f9743c5d

https://towardsdatascience.com/understanding-actor-critic-methods-
931b97b6df3f

https://towardsdatascience.com/proximal-policy-optimization-ppo-
with-sonic-the-hedgehog-2-and-3-c9c21dbed5e

https://towardsdatascience.com/illustrated-self-attention-
2d627e33b20a

Pascal Leroy Emergent Tool Use from Multi-Agent Interaction https://openai.com/blog/emergent-tool-use/April 2020 40 / 41

https://openai.com/blog/emergent-tool-use/


The End
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