
INFO8002

Large-Scale Data Systems
Exercise Session #4

Academic year 2021-2022

Reminder

REMINDER :

 ● A distributed hash table (DHT) is a class of (decentralized?) distributed
systems that provide a lookup services similar to a hash table.

○ Every node in a distributed hash table is responsible for a set of keys and
their associated values.

○ The key is a unique identifier for its associated data value, obtained using a
hashing function.

○ The data values can be any form of data.

Distributed Hash Tables

REMINDER :

 Chord Algorithm: a protocol and algorithm for a peer-to-peer distributed hash table.

Distributed Hash Tables

REMINDER :

 Chord Algorithm: a protocol and algorithm for a peer-to-peer distributed hash table.

● Interface:
○ Support a single operation: lookup(k) → Return the ip of the host which hold the data

associated to k.

● Properties:
○ If k is stored on the DHT, a process will eventually find a node which stores k.

○ Termination

Distributed Hash Tables
Not Really!

Help to locate where a
resource is!

PROBLEM 1

Content Sharing System
You are responsible for designing a system allowing the storage and distribution
of content.

Specify an architecture for this distributed storage system and provide a
pseudo-implementation using distributed hash tables.

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1EXt-R8zdljxdpV5hk2rDzCeEQ3l5OENe

Content Sharing System - 1st Design
Write query Read query

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G17Ir4FWUizNIdgk9P3hK_EA60y2EW2uLe
https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1WtGB7DKwvAOhMDRtm0MzgPjt4SdolC0Q

Module 1: Interface and properties of distributed storage
Module:

Name: NapsterClientServerRegister, instance npr.

Events:
Request: < npr, Read | r, m > : Invokes a read operation on m consecutive registers

starting on register r.
Request: < npr, Write | v, r> : Invokes a write operation with value v starting on register r.
Indication: < npr, ReadReturn | v > : Completes a read operation with return value v.
Indication: < npr, WriteReturn> : Completes a write operation.

Properties:
NP1: Termination.
NP2: Validity.

Content Sharing System - 1st Design
Module Specification:

Content Sharing System - 1st Design
Implementation

Algorithm 3:
Implements:

NapsterClientServerRegister, instance npr.
Uses:

(1, N)-NewRegularRegister, instance onnrr.

upon event < npr, Init > do
pendingR := pendingWr := ∅;

upon event < npr, Write | v, r > do
forall v’ ∈ v do

pendingWr := pendingWr ∪ {r + index(v)};
forall v’ ∈ v do

trigger < onnrr, Write | v’, r + index(v)>;

upon event < npr, Read | r, m > do
ReadRet := [0]m; offset := r;
for i in range(m) do pendingR := pendingR ∪ {r + i};
for i in range(m) do trigger < onrr, Read | r + i >;

upon event < onrr, ReadReturn | r, v> do
pendingR := pendingR \ {r};
ReadRet[r-offset] := v;
if pendingR ⊆ ∅ then

trigger < np, ReadReturn | ReadRet >;

upon event < onrr, WriteReturn | r > do
pendingWr := pendingWr \ {r};
if pendingWr ⊆ ∅ then

trigger < onnrr, Flush>

upon event < onnrr, FlushReturn > do
trigger < np, WriteReturn >;

Content Sharing System - Updated
Write query Read query

How ?

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1SjFaayKDK6QJuLpZM4qM7uodLbDQcCzB
https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1dgB9I2ucS_UGT39Yd6cSZJ0u3CDF1d6Y

Module 1: Interface and properties of distributed storage
Module:

Name: NapsterServer, instance np.

Events:
Request: < np, Read | k > : Invokes a read operation of value with key k.
Request: < np, Write | k, v > : Invokes a write operation of value v with key k.
Indication: < np, ReadReturn | v > : Completes a read operation with return value v.
Indication: < np, WriteReturn> : Completes a write operation.

Content Sharing System - Updated
Module Specification:

Content Sharing System - Updated
Problems:

1. How can we ensure that operations terminates ?
Property n°1: “Termination”
“If a correct process invokes an operation, then the operation eventually completes.”

2. How can we ensure that users receives a coherent response to their
read request ?
Property n°2: “Validity”
“A get that is not concurrent with a put returns the last value written; a get that is

concurrent with a put returns the last value written or the value concurrently written or no value.”

Module 1: Interface and properties of distributed storage
Module:

Name: NapsterServer, instance np.

Events:
Request: < np, Read | k > : Invokes a read operation of value with key k.
Request: < np, Write | k, v > : Invokes a write operation of value v with key k.
Indication: < np, ReadReturn | v > : Completes a read operation with return value v.
Indication: < np, WriteReturn> : Completes a write operation.

Properties:
NP1: Termination.
NP2: Validity.

Content Sharing System - Updated
Module Specification:

Content Sharing System - Updated
Implementation

Algorithm 1:
Implements:

NapsterServer, instance np.
Uses:

Chord, instance chord.
NapsterClientServerRegister, instance npr.

upon event < np, Init > do
???

upon event < np, Write | k, v > do
???

upon event < np, Read | k > do
???

upon event < chord, lookupComplete | k, ip, r, m > do
???

upon event < npr, ReadReturn | v> do
???

upon event < npr, WriteReturn > do
???

Content Sharing System - Updated
Implementation

Algorithm 1:
Implements:

NapsterServer, instance np.
Uses:

Chord, instance chord.
NapsterClientServerRegister, instance npr.

upon event < np, Init > do
pendingR := ∅;
pendingWr := ∅;

upon event < np, Write | k, v > do
pendingWr := pendingWr ∪ {k : v};
trigger < chord, lookup| k >;

upon event < np, Read | k > do
pendingR := pendingR ∪ {k};
trigger < chord, lookup| k >;

upon event < chord, lookupComplete | k, ip, r, m > do
if k ∊ pendingR then

trigger < npr, ip, Read | r, m >;
pendingR := pendingR \ {k};

if k ∊ pendingWr then
trigger < npr, ip, Write | pendingWr[k], r >;
pendingWr := pendingWr \ {k};

upon event < npr, ReadReturn | v> do
trigger < np, ReadReturn | v >;

upon event < npr, WriteReturn > do
trigger < np, WriteReturn >;

Content Sharing System - Updated
Chord vs Kademlia:

● Kademlia specifies how values should be stored & retrieved.
○ Resilient to node failures with persistent data storage.
○ Handling of nodes leaving/failing → straightforward (by design).
○ Provable properties in 1st paper → Chord needed further specifications1.

● Performance comparisons of both algorithms are debatable depending on situations2.

● OTHER DESIGNS:
○ CAN, Pastry, Tapestry → O(log(n)) lookup (2001),
○ Koorde (2003) → O(log(n)/log(log(n))) lookup but complex to implement!

1. Zave, Pamela. "Using lightweight modeling to understand Chord." ACM SIGCOMM Computer Communication Review 42.2 (2012): 49-57.
2. Li, Jinyang, et al. "Comparing the performance of distributed hash tables under churn." International Workshop on Peer-to-Peer Systems. Springer,

Berlin, Heidelberg, 2004.

