
INFO8002

Large-Scale Data Systems
Exercise Session #3

Academic year 2021-2022

Reminder

REMINDER :

 ● Consensus mechanisms allows a distributed system to maintain some common
state or to agree on some future actions.

● FLP Theorem

“In an asynchronous network where messages may be delayed but not lost,
there is no consensus algorithm that is guaranteed to terminate in every
execution for all starting conditions, if at least one node may experience failure.”

Consensus

REMINDER :

 ● Two types of consensus algorithms, differing on the guarantees they provide in
the presence of faulty processes:

Consensus VS Uniform Consensus

Module:
Name: Consensus, instance c.

Events:
Request: < c, Propose | v > : Propose value v for consensus.
Indication: < c, Decide | v > : Outputs a decided value v of
consensus.

Properties:
C1: Termination: “Every correct process eventually decides
some value.”
C2: Validity: “If a process decides v, then, v was proposed by
some process.”
C3: Integrity: “No process decides twice.”
C4: Agreement: “No two correct process decide differently.”

Module:
Name: UniformConsensus, instance uc.

Events:
Request: < uc, Propose | v > : Propose value v for consensus.
Indication: < uc, Decide | v > : Outputs a decided value v of
consensus.

Properties:
C1: Termination: “Every correct process eventually decides
some value.”
C2: Validity: “If a process decides v, then, v was proposed by
some process.”
C3: Integrity: “No process decides twice.”
C4: Uniform Agreement: “No two processes decide differently.”

REMINDER :

 ● Consensus can be implemented in synchronous and partially synchronous
systems:

Consensus VS Uniform Consensus

Consensus:
● Fail-stop - Hierarchical

○ Broadcast: Best effort
○ Failure Detector : Perfect

Uniform Consensus:
● Fail-stop - Hierarchical

○ Broadcast: Reliable & Best effort
○ Failure Detector : Perfect

● Fail-noisy - Leader Driven
○ Use of Epoch Consensus using Eventual

Leader Election.

PROBLEM 1

Version Control System
You are responsible for designing a system allowing decentralized version control.

Specify an architecture for this distributed version control system and provide a
pseudo-implementation using consensus.

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1gNQUfbhYAgqbmmNArw5Qnpub9QcIftPj

Version Control System
Write query Read query

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1ZZdSYskTdFMoLUzTXG16U_-1dTYPFtl6
https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1765lJZn01S_-0NZMm_0Ns-MP16eAt8Vm

Version Control System
Problems:

1. How can we ensure that operations terminates ?

Version Control System
Problems:

1. How can we ensure that operations terminates ?
Property n°1: “Termination”
“If a correct process invokes an operation, then the operation eventually completes.”

2. How can we ensure that commits are applied consistently on all
remote clients?

Version Control System
Problems:

1. How can we ensure that operations terminates ?
Property n°1: “Termination”
“If a correct process invokes an operation, then the operation eventually completes.”

2. How can we ensure that commits are applied consistently on all
remote clients?
Property n°2: “Agreement”
“All correct processes applies the same sequence of operation.”

Module 1: Interface and properties of version control system
Module:

Name: GitClient , instance gc.

Events:
Request: < gc, Push | m, n > : Invokes a push operation of commit m with commit id n.
Request: < gc, Pull | n > : Invokes a pull operation starting at commit id n.
Indication: < gc, PushReturn | n > : Completes a push operation with commit n.
Indication: < gc, PullReturn | m > : Completes a pull operation with commit list m.

Properties:
G1: Termination.
G2: Agreement.

Version Control System
Module Specification:

“Total Order Broadcast” Module

Version Control System
Implementation

Algorithm 1:
Implements:

GitClient, instance gc.
Uses:

ReliableBroadcast, instance rb.
Consensus (multiple instances)

upon event < gc, Init >do
???

upon event < gc, Pull | n > do
???

upon event < gc, Push | m, n > do
???

upon event < rb, Deliver | m, n> do
???

upon event undecided ≠ ∅ and wait = False do
???

upon event < c.r, Decide | decided > do
???

Version Control System
Implementation

Algorithm 1:
Implements:

GitClient, instance gc.
Uses:

ReliableBroadcast, instance rb.
Consensus (multiple instances)

upon event < gc, Init >do
commits := undecided := ∅;
round := 1
wait := False

upon event < gc, Pull | n > do
trigger < gc, PullReturn | commits[n:end] >

upon event < gc, Push | m, n > do
trigger < rb, Broadcast | <m,n> >;

upon event < rb, Deliver | m, n> do
if m∉ undecided then

undecided := undecided ∪ {m, n};

upon event undecided ≠ ∅ and wait = False do
wait := True
trigger < c.round, Propose | undecided >;

upon event < c.r, Decide | decided > do
forall (m, n) ∈ sort(decided) do // Sort by commit n°.

commits := commits ∪ m; // Apply commit n° n.
trigger < gc, PullReturn | n >

undecided := undecided \ decided;
round := round + 1;
wait := False;

Content Sharing System
Problems:
● Which consensus algorithm would you use

1. In a fail-stop system?
2. In a fail-silent system?
3. In a byzantine system?

● Is Uniform Consensus necessary? When ?

HOMEWORK !

