
INFO8002

Large-Scale Data Systems
Exercise Session #2

Academic year 2021-2022

Reminder

REMINDER :

 Distributed system models are defined as the combination of (i) a process
abstraction, (ii) a link abstraction, and (iii) a failure detector abstraction:

Distributed System Models

● Fail-stop
○ Process : Crash-stop
○ Link : Perfect
○ Failure Detector : Perfect

● Fail-silent
○ Process : Crash-stop
○ Link : Perfect
○ Failure Detector : /

● Fail-noisy
○ Process : Crash-stop
○ Link : Perfect links
○ Failure Detector : Eventually perfect

● Fail-recovery
○ Process : Crash-recovery
○ Link : Stubborn
○ Failure Detector : /

● Fail-arbitrary
○ Process : Byzantine
○ Link : Perfect
○ Failure Detector : /

REMINDER :

 ● Shared memory can be viewed as an array of registers to which a process
can read or write.

● Shared memory models are defined as a combination of behaviour of registers
in presence of (i) failures, and (ii) concurrent operations :

Shared Memory Abstraction

● Safe Register (not seen)
○ Failures : ??
○ Concurrency : Arbitrary value

● Regular Register
○ Failures : Fail-stop or Fail-silent (others?)
○ Concurrency: Previous or concurrently written

value

● Atomic Register
○ Failures : Fail-stop (others?)
○ Concurrency : Ensure linearisability of

operations

PROBLEM 1

Content Sharing System
You are responsible for designing a system allowing the storage and distribution
of content.

Specify an architecture for this distributed storage system and provide a
pseudo-implementation using shared registers.

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1EXt-R8zdljxdpV5hk2rDzCeEQ3l5OENe

Content Sharing System
Write query Read query

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G17Ir4FWUizNIdgk9P3hK_EA60y2EW2uLe
https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1WtGB7DKwvAOhMDRtm0MzgPjt4SdolC0Q

Content Sharing System
Write query Read query

Not Important!

https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G17Ir4FWUizNIdgk9P3hK_EA60y2EW2uLe
https://app.diagrams.net/?page-id=e3a06f82-3646-2815-327d-82caf3d4e204&scale=auto#G1WtGB7DKwvAOhMDRtm0MzgPjt4SdolC0Q

Content Sharing System
Problems:

1. How can we ensure that operations terminates ?

Content Sharing System
Problems:

1. How can we ensure that operations terminates ?
Property n°1: “Termination”
“If a correct process invokes an operation, then the operation eventually completes.”

2. How can we ensure that users receives a coherent response to their
read request ?

Content Sharing System
Problems:

1. How can we ensure that operations terminates ?
Property n°1: “Termination”
“If a correct process invokes an operation, then the operation eventually completes.”

2. How can we ensure that users receives a coherent response to their
read request ?
Property n°2: “Validity”
“A read that is not concurrent with a write returns the last value written; a read that is

concurrent with a write returns the last value written or the value concurrently written.”

Module 1: Interface and properties of distributed storage
Module:

Name: NapsterClientServer, instance np.

Events:
Request: < np, Read | r, m > : Invokes a read operation on m consecutive registers starting

on register r.
Request: < np, Write | v, r> : Invokes a write operation with value v starting on register r.
Indication: < np, ReadReturn | v > : Completes a read operation with return value v.
Indication: < np, WriteReturn> : Completes a write operation.

Properties:
NP1: Termination.
NP2: Validity.

Content Sharing System
Module Specification:

“(1, N) Regular Register” Module

Content Sharing System
Implementation

Algorithm 1:
Implements:

NapsterClientServer, instance np.
Uses:

(1, N)-RegularRegister, instance onrr.

upon event < np, Init > do
???

upon event < np, Write | v, r > do
???

upon event < np, Read | r, m > do
???

upon event < onrr, ReadReturn | r, v> do
???

upon event < onrr, WriteReturn | r > do
???

Content Sharing System
Implementation

Algorithm 1:
Implements:

NapsterClientServer, instance np.
Uses:

(1, N)-RegularRegister, instance onrr.

upon event < np, Init > do
memory := [0]MemorySize;
pendingR := ∅;
pendingWr := ∅;

upon event < np, Write | v, r > do
forall v’ ∈ v do

pendingWr := pendingWr ∪ {r + index(v)};
forall v’ ∈ v do

trigger < onrr, Write | v’, r + index(v)>;

upon event < np, Read | r, m > do
ReadRet := [0]m;
offset := r;
for i in range(m) do pendingR := pendingR ∪ {r + i};
for i in range(m) do trigger < onrr, Read | r + i >;

upon event < onrr, ReadReturn | r, v> do
pendingR := pendingR \ {r};
ReadRet[r-offset] := v;
if pendingR ⊆ ∅ then

trigger < np, ReadReturn | ReadRet >;

upon event < onrr, WriteReturn | r > do
pendingWr := pendingWr \ {r};
if pendingWr ⊆ ∅ then

trigger < np, WriteReturn >;

PROBLEM:

NapsterClient

NapsterServer

User

→ We would like to ensure coherency of the distributed storage.

write ≅

Content Sharing System

5 50 45 84 70 90 64 37 80 78

write 5 to reg[0] write to reg[0] ok

read
5 50 .. 80 0

0 0 0 0 0 0 0 0 0 0

write 80 to reg[8] write to reg[8] ok

CORRUPTED

PROBLEM:

NapsterClient

NapsterServer

User

→ We would like to ensure coherency of the distributed storage.

SOLUTION: Write to temporary buffer until all data are received.

write ≅

Content Sharing System

5 50 45 84 70 90 64 37 80 78

write 5 to reg[0] write to reg[0] ok

read
5 50 .. 80 0

0 0 0 0 0 0 0 0 0 0

write 80 to reg[8] write to reg[8] ok

CORRUPTED

Content Sharing System
Implementation

Algorithm 2:
Implements:

(1, N)-NewRegularRegister, instance onnrr.
Uses:

BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl;
PerfectFailureDetector, instance P.
upon event < onnrr, Init > do

val := [0]MemorySize;
wrBuffer := [0]MemorySize;
correct := Π;
writeset := ∅;

upon event < onnrr, Write | v, r > do
trigger < beb, Broadcast | [WRITE, v, r]>;

upon event < beb, Deliver | q, [Write, v, r]> do
wrBuffer[r] = v;
trigger < pl, Send | q, ACK>;

upon event < onnrr, Flush > do
val := wrBuffer;
trigger < onnrr, FlushReturn >;

… (cfr. Theoretical Lectures : “(1,N)-RegularRegister”)

Content Sharing System
Implementation

Algorithm 3:
Implements:

NapsterClientServer, instance np.
Uses:

(1, N)-NewRegularRegister, instance onnrr.

upon event < np, Init > do
pendingR := pendingWr := ∅;

upon event < np, Write | v, r > do
forall v’ ∈ v do

pendingWr := pendingWr ∪ {r + index(v)};
forall v’ ∈ v do

trigger < onnrr, Write | v’, r + index(v)>;

upon event < np, Read | r, m > do
ReadRet := [0]m; offset := r;
for i in range(m) do pendingR := pendingR ∪ {r + i};
for i in range(m) do trigger < onrr, Read | r + i >;

upon event < onrr, ReadReturn | r, v> do
pendingR := pendingR \ {r};
ReadRet[r-offset] := v;
if pendingR ⊆ ∅ then

trigger < np, ReadReturn | ReadRet >;

upon event < onrr, WriteReturn | r > do
pendingWr := pendingWr \ {r};
if pendingWr ⊆ ∅ then

trigger < onnrr, Flush>

upon event < onnrr, FlushReturn > do
trigger < np, WriteReturn >;

Content Sharing System
Problems:
● Do you see any other problems?

Content Sharing System
Problems:
● Napster is a technology allowing to have several servers that can be reached for write and read

requests. How would you implement this in:
1. In a fail-stop system?
2. In a fail-silent system?
3. In a byzantine system?

HOMEWORK !

