
INFO8002

Large-Scale Data Systems
Exercise Session #1

Academic year 2021-2022

CONTACT

● Ben Mariem Sami

● Office 1.14 - B37 Institut Mathématique

● sami.benmariem@uliege.be

● https://github.com/glouppe/info8002-large-scale-data-systems

mailto:sami.benmariem@uliege.be
https://github.com/glouppe/info8002-large-scale-data-systems

ORGANISATION
● Evaluation:

○ Reading assignment → 10% of the final mark

○ Project 1 → 40% of the final mark

○ Oral Exam → 50% of the final mark

Reminder

REMINDER :

● A distributed algorithm is a distributed collection Π = {p,q,r,...} of N
processes implemented by finite state automata.4

● Event-based component or module model:
○ Each program consists of a set of modules.
○ Modules interact via events.

Asynchronous Event-based Composition Model

REMINDER :

 ● Asynchronous events represent communication or control flow between
components:

○ Each component is constructed as a state-machine whose transitions are triggered
by the reception of events.

○ Events carry information (sender, message, etc)

● Code for each component looks like this:

Asynchronous Event-based Composition Model

upon event <Module1, Event1 | att¹, att², ...> do
...
trigger <Module2, Event2 | att¹, att², ...>; //Trigger some events

PROBLEM 1

Peer-To-Peer Messaging System
You are responsible for creating a peer-to-peer messaging system.

Specify a link abstraction module for message delivery between peers, and
provide a pseudo-implementation using sequence numbers.

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Reliable Delivery:
“If a correct process p sends a message m to a correct process q, then q eventually delivers

m.”

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Reliable Delivery:
“If a correct process p sends a message m to a correct process q, then q eventually delivers

m.”

2. How can we ensure that no messages are delivered more than once ?

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Reliable Delivery:
“If a correct process p sends a message m to a correct process q, then q eventually delivers

m.”

2. How can we ensure that no messages are delivered more than once ?
Property n°2: No Duplication:
“No message is delivered by a process more than once.”

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Reliable Delivery:
“If a correct process p sends a message m to a correct process q, then q eventually delivers

m.”

2. How can we ensure that no messages are delivered more than once ?
Property n°2: No Duplication:
“No message is delivered by a process more than once.”

3. How can we ensure that messages that has been delivered has been
sent by some other process?

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Reliable Delivery:
“If a correct process p sends a message m to a correct process q, then q eventually delivers

m.”

2. How can we ensure that no messages are delivered more than once ?
Property n°2: No Duplication:
“No message is delivered by a process more than once.”

3. How can we ensure that messages that has been delivered has been
sent by some other process?
Property n°3: No Creation:
“If some process q delivers a message m with sender p, then m was previously sent to q by

process p.”

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that messages are delivered in order?

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that messages are delivered in order?
Property n°4: FIFO delivery:
“If some process p sends message m1 before it sends message m2, then no correct process

delivers m2 unless it has already delivered m1.”

Peer-To-Peer Messaging System
Module Specification:

Module 1: Interface and properties of peer-to-peer messaging links
Module:

Name: MessagingLinks, instance ml.

Events:
Request: <ml, Send | q, m> : Requests to send message m to process q.
Indication: <ml, Deliver | p, m> : Delivers message m sent by process p.

Properties:
ML1: Reliable delivery.
ML2: No duplication. “Perfect point-to-point links” Module
ML3: No creation.
ML4: FIFO delivery.

Peer-To-Peer Messaging System
Implementation

Algorithm 1: Sequence Number
Implements:

MessagingLinks, instance ml.
Uses:

PerfectPointToPointLinks, instance pl.

upon event <ml, Init> do
???

upon event <ml, Send | q, m> do
???

upon event <pl, Deliver | p, (m, sn)> do
???

Peer-To-Peer Messaging System
Implementation

Algorithm 1: Sequence Number
Implements:

MessagingLinks, instance ml.
Uses:

PerfectPointToPointLinks, instance pl.

upon event <ml, Init> do
forall p ∈Π do

lsn[p] := 0;
next[p] := 1;

upon event <ml, Send | q, m> do
lsn[q] := lsn[q] + 1;
trigger <pl, Send | q, (m, lsn[q])>;

upon event <pl, Deliver | p, (m, sn)> do
???

Peer-To-Peer Messaging System
Implementation

Algorithm 1: Sequence Number
Implements:

MessagingLinks, instance ml.
Uses:

PerfectPointToPointLinks, instance pl.

upon event <ml, Init> do
forall p ∈Π do

lsn[p] := 0;
next[p] := 1;

upon event <ml, Send | q, m> do
lsn[q] := lsn[q] + 1;
trigger <pl, Send | q, (m, lsn[q])>;

upon event <pl, Deliver | p, (m, sn)> do
pending := pending ∪ {(p, m, sn)};
while exists (q, n, sn’) ∈ pending such

that sn’ = next[q] do
next[q] := next[q] + 1;
pending := pending \ {(q, n, sn’)};
trigger <ml, Deliver | q, n>

PROBLEM 2

Peer-To-Peer Messaging System
You are responsible for creating a peer-to-peer messaging system with
messaging room.

Specify a broadcast abstraction module for message delivery to all peers in
the same messaging room as the sender.

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Validity:
“If a correct process p broadcasts a message m, then every correct process eventually

delivers m.”

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Validity:
“If a correct process p broadcasts a message m, then every correct process eventually

delivers m.”

2. How can we ensure that no messages are delivered more than once ?

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Validity:
“If a correct process p broadcasts a message m, then every correct process eventually

delivers m.”

2. How can we ensure that no messages are delivered more than once ?
Property n°2: No Duplication:
“No message is delivered by a process more than once.”

3. How can we ensure that messages that has been delivered has been
sent by some other process?

Peer-To-Peer Messaging System
Problems:

1. How can we ensure that messages are eventually delivered?
Property n°1: Validity:
“If a correct process p broadcasts a message m, then every correct process eventually

delivers m.”

2. How can we ensure that no messages are delivered more than once ?
Property n°2: No Duplication:
“No message is delivered by a process more than once.”

3. How can we ensure that messages that has been delivered has been
sent by some other process?
Property n°2: No Creation:

 “If a process delivers a message m with sender s, then m was previously broadcast by
process s.””

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that if sender crashes, all or none of the correct
node deliver the message?

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that if sender crashes, all or none of the correct
node deliver the message?
Property n°4: Agreement::
“If a message m is delivered by some correct process, then m is eventually delivered by every
correct process.”

5. How can we ensure that messages are delivered in order?

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that if sender crashes, all or none of the correct
node deliver the message?
Property n°4: Agreement::
“If a message m is delivered by some correct process, then m is eventually delivered by every
correct process.”

5. How can we ensure that messages are delivered in order?
Property n°4: FIFO delivery:
“If some process p broadcast message m1 before it broadcast message m2, then no correct

process delivers m2 unless it has already delivered m1.”

Peer-To-Peer Messaging System
Module Specification:

Module 2: Interface and properties of peer-to-peer messaging broadcast
Module:

Name: FIFOMessagingBroadcast, instance fmb.

Events:
Request: <fmb, Broadcast | m> : Requests to broadcast message m.
Indication: <fmb, Deliver | p, m> : Delivers message m broadcast by

process p.

Properties:
FMB1: Validity.
FMB2: No duplication. “Reliable Broadcast” Module
FMB3: No creation.
FMB4: Agreement.
FMB5: FIFO delivery.

Peer-To-Peer Messaging System
Implementation

Algorithm 2: Sequence Number Broadcast
Implements:

FIFOMessagingBroadcast, instance fmb.
Uses:

ReliableBroadcast, instance rb.

upon event <fmb, Init> do
???

upon event <fmb, Broadcast | m> do
???

upon event <rb, Deliver | p, [DATA,s, m,sn]> do
???

Peer-To-Peer Messaging System
Implementation

Algorithm 2: Sequence Number Broadcast
Implements:

FIFOMessagingBroadcast, instance fmb.
Uses:

ReliableBroadcast, instance rb.

upon event <fmb, Init> do
lsn := 0;
pending := ∅;
next := [1]N;

upon event <fmb, Broadcast | m> do
lsn := lsn + 1 ;
trigger <rb, Broadcast | [DATA, self, m, lsn] >;

upon event <rb, Deliver | p, [DATA,s, m,sn]> do
pending := pending ∪ {(s, m, sn)};
while exists (s, m’, sn’) ∈ pending such that

sn’= next[s] do
next[s] := next[s] + 1 ;
pending := pending \{(s, m’, sn’)};
trigger <frb, Deliver | s,m’>;

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that if sender crashes, all or none of the correct
node deliver the message?
Property n°4: Agreement::
“If a message m is delivered by some correct process, then m is eventually delivered by every
correct process.”

5. How can we ensure that messages are delivered in order?
Property n°4: FIFO delivery:
“If some process p broadcast message m1 before it broadcast message m2, then no correct

process delivers m2 unless it has already delivered m1.”

PROBLEM:
Sender Message

Mr. X Where is the lecture?

Mr. X Thank you!

Mrs. Y R3.

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that if sender crashes, all or none of the correct
node deliver the message?
Property n°4: Agreement::
“If a message m is delivered by some correct process, then m is eventually delivered by every
correct process.”

5. How can we ensure that messages are delivered in order?
Property n°4: Causal delivery:
“For any message m1 that potentially caused a message m2, i.e., m1 →m2, no process

delivers m2 unless it has already delivered m1.”

Peer-To-Peer Messaging System
Module Specification:

Module 2: Interface and properties of peer-to-peer messaging broadcast
Module:

Name: CausalMessagingBroadcast, instance cmb.

Events:
Request: <cmb, Broadcast | m> : Requests to broadcast message m.
Indication: <cmb, Deliver | p, m> : Delivers message m broadcast by

process p.

Properties:
FMB1: Validity.
FMB2: No duplication. “Causal Order Reliable Broadcast” Module
FMB3: No creation. (cfr. lecture 3)
FMB4: Agreement.
FMB5: Causal delivery.

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that if sender crashes, all or none of the correct
node deliver the message?
Property n°4: Agreement::
“If a message m is delivered by some correct process, then m is eventually delivered by every
correct process.”

5. How can we ensure that messages are delivered in order?
Property n°4: Causal delivery:
“For any message m1 that potentially caused a message m2, i.e., m1 →m2, no process

delivers m2 unless it has already delivered m1.”

PROBLEM:

Sender Message

Mr. X Where is the lecture?

Mrs Y R3.

Mrs. Z Where is the lecture?

Mr. X Thank you!

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that messages are delivered in order?
Property n°4: Total Order delivery:
“If correct processes pi and pj both deliver messages m1 and m2, then pi delivers m1 before

m2 IFF process pj delivers m2 before m1.”

Peer-To-Peer Messaging System
Problems:

4. How can we ensure that messages are delivered in order?
Property n°4: Total Order delivery:
“If correct processes pi and pj both deliver messages m1 and m2, then pi delivers m1 before

m2 IFF process pj delivers m2 before m1.”

● In an asynchronous system?
● In a partially asynchronous system?
● In a synchronous system?

HOMEWORK !

