Large-scale Data Systems

Lecture 9: Cloud computing

Prof. Gilles Louppe
g.louppe@uliege.be

¥ LIEGE

université

1/54

http://localhost:8001/g.louppe@uliege.be

How do we program this thing?

e MapReduce
e Spark

Dealing with lots of data

e Example:
o 130+ trillion web pages x 50KB = 6.5 exabytes.
o ~6500000 hard drives (1 TB) just to store the web.

e Assuming a data transfer rate of 200MB /s, it would require 1000+ years
for a single computer to read the web!

o And even more to make any useful usage of this data.

e Solution: spread the work over many machines.

3/54

Traditional network programming

e Message-passing between nodes (MPI, RPC, etc).
e Really hard to do at scale (for 1000s of nodes):

o Howto split problem across nodes?
= |mportant to consider network and data locality.

o How to deal with failures?

= 2 10000-node clusters sees 10 faults/day.

o Evenwithout failure: stragglers.

= Some nodes might be much slower than others.

4/54

® mpi @ spark hadoop

-

Moyennes 1 ien-.: 2004 1 oct. 2011

Almost nobody does message-passing anymore!*

*: except in niches, like scientific computing. 5/54

Data-parallel models

e Restrict and simplify the programming interface so that the system can do
more automatically.

e "Hereis an operation, run it on all of the data".
o | do not care where it runs (you schedule that).

o Infact, feel free to run it twice on different nodes if that can help.

6/54

History

2004 2010
MapReduce paper Spark paper

2002 2008 2014
MapReduce @ Google Hadoop Summit Apache Spark top-level

2006
Hadoop @ Yahoo!

7/54

MapReduce

What is MapReduce?

MapReduce is a parallel programming model for processing distributed dataon a
cluster.

It comes with a simple high-level APl limited to two operations: map and reduce,
as inspired by Lisp primitives:

e map: apply function to each value in a set.

o (map 'length '"(() (a) (a b) (a b c)))—>(0 1 2 3)

e reduce:combines all the values using a binary function.

© (reduce #'+ '"(1 2 3 4 5))—15

9/54

e MapReduce is best suited for embarrassingly parallel tasks.
o When processing can be broken into parts of equal size.

o When processes can concurrently work on these parts.

e This abstraction makes it possible to not worry about handling
o parallelization
o datadistribution

o load balancing

o fault tolerance

10/ 54

Programming model

e Map:input key/value pairs — intermediate key/value pairs
o User function gets called for each input key/value pair.

o Produces a set of intermediate key/value pairs.

e Reduce: intermediate key/value pairs — result files

o Combine all intermediate values for a particular key through a user-defined function.

o Produces a set of merged output values.

11/54

Examples

e Count URL access frequency
o Findthe frequency of each URL in web logs.
o Map: process logs of web page access. Produce (url, 1) pairs.

o Reduce: add all values for the same URL.

= s this efficient?
e Reverse web-link graph
o Find where page links come from.
o Map:output (target, source) pairs for each link target in aweb page source.

o Reduce: concatenate thelist of all source URLs associated with a target.

e Distributed grep
o Search for words in lots of documents.
o Map: emit alineif it matches a given pattern. Produce (file, line) pairs.

o Reduce: copy the intermediate data to the output.

12/54

Under the hood

Map worker

e Map:

o Map calls are distributed across machines by automatically partitioning the input data into M
shards.

o Parsetheinput shards into input key/value pairs.

o Process each input pair through a user-defined map function to produce a set of intermediate
key/value pairs.

o Write theresult to an intermediate file.

e Partition:

o Assign an intermediate result to one of R reduce tasks based on a partitioning function.

= Both R and the partitioning function are user defined.

13/54

Reduce worker

e Sort:
o Fetch the relevant partition of the output from all mappers.
o Sort by keys.
= Different mappers may have output the same key.
e Reduce:
o Accept an intermediate key and a set of values for the key.

o For each unique key, combine all values through a user-defined reduce function to form a smaller
set of values.

14/ 54

Overview

N assign tasks
Shard 0
IF N
Shard 1 J Reduce Output
) worker file
Shard 2 IF
y ‘ Reduce Output
worker - file
™
IF #
Shard M-1
J
Input files Map workers Interfrirll :5d late Reduce workers Output files

15/54

Step 1: Splitinput files

Shard 0

Shard 1

Shard 2

Shard M-1

e Break up theinputdatainto M shards (typically 64 MB).

16/54

Step 2: Fork processes

e Start up many copies of the program on a cluster of machines.
o 1 master: scheduler and coordinator

o Lots of workers

e |dle workers are assigned either:

o map tasks
= each works on a shard

s there are M map tasks

o reducetasks
= each works on intermediate files

= there are R reduce tasks

17/54

Step 3: Map task

read Map
Shard 2

e Read content of the input shard assigned to it.

e Parse key/value pairs (k, v) out of the input data.

e Pass each pair to a user-defined map function.
o Produce (one or more) intermediate key/value pairs (k’, v’).

o These are buffered in memory.

18/54

Step 4: Create intermediate files

4)
local partition 1
read Map write_| partition 1
Shard 2 @ partition R-1
partition 4
. /

Intermediate file

e Intermediate key/value pairs (k’, v") produced by the user's map function
are periodically written to local disk.

o These files are partitioned into R regions by a partitioning function, one for each reduce task.

o eg,hash(key) mod R

e Notify master when complete.
o Pass locations of intermediate data to the master.

o Master forwards these locations to the reduce workers.

[Q] What is the purpose of the partitioning function?

19/54

Step 5: Sorting/Shuffling

remote

A

(" local

Map write I Reduce
worker worker
N
[|

ocal
Map write - Reduce
worker worker

. A

N N/

e Reduce worker get notified by master about the location of the intermediate
files associated to their partition.

e RPCtoreadthedatafromthe local disks for the map workers.

e When the reduce worker reads intermediate data for its partition:
o it sorts the data by intermediate keys k'.

!/ B
o alloccurrences v, associated to a same key are grouped together.

20/54

Step 6: Reduce tasks

Output
file

Reduce
waorker

e Thesorting phase grouped data sharing a unique intermediate key.

e The user-defined reduce function is given the key and the set of intermediate
values for that key.

o (K, (vi,vy,v3,...))

e The output of the reduce function is appended to an output file.

21/54

Step 7: Return to user

e When all Map and Reduce tasks have completed, the master wakes up the
user program.

e The MapReduce callin the user program returns and the program can
resume execution.

o The output of the operation is available in R output files.

22/54

Example: Counting words

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 » Bear, 2
Deer, 1 s Bear, 1
Deer Bear River » Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3 w Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River »| Car Car River » Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 » Deer, 2 -
Deer, 1
Deer, 1 ;
Deer Car Bear » Car, 1
Bear, 1 River, 1 » River, 2
River, 1

See also the Hadoop tutorial.

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Wide applicability

1000 —

0 | | | | | | |
Mar May Jul Sep MNov Jan Mar May Jul Sep

2003 2004

Number of MapReduce programs in Google code source tree.

Fault tolerance

Master pings each worker periodically.
e If noresponse is received within a certain delay, the worker is marked as
failed.

e Map or Reduce tasks given to this worker are reset back to the initial state
and rescheduled for other workers.

e Task completion is committed to master to keep track of history.

Exercise

e What abstraction does this use?

e What if the master node fails? How would you fix that?

25/54

Redundant execution

e Slow workers significantly lengthen completion time
o Because of other jobs consuming resources on machine
o Bad disks with soft errors transfer data very slowly

o Weird things: processor caches disabled (!!)

e Solution: Near end of phase, spawn backup copies of tasks

o Whichever one finishes first "wins"

o Effect: Dramatically shortens job completion time

26/54

Locality

e Input and output files are stored on a distributed file system.
o eg.,GFSorHDFS.

e Master tries to schedule Map workers near the data they are assigned to.
o e.g.,onthe same machine orinthe samerack.

o often, MapReduce is run concurrently with GFS on the same nodes.

e Thisresultsin thousands of machines reading input at local disk speed.

o Without this, rack switches limit read rate.

27 /54

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jelf@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
maodity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
maost of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then

Google, 2004.

28/54

Hadoop Ecosystem

GraphX Sp Qﬂzz

MLlIib
@ %
§ § < T—-— gv %ﬁu Spaik' Spaik’ s ﬁ
I

Pig Streaming

5 STORM

_ ek I NE
i i O ThEREED Spark: EE E}g
[k K=t 0 B

ZooKeeper ‘ EI
'@'Flﬂgﬁsdmap
£ SBkaka 0000

29/54

Hadoop HDFS: A distributed file system for reliably storing huge amounts of
unstructured, semi-structured and structured data in the form of files.

Hadoop MapReduce: Adistributed algorithm framework for the parallel
processing of large datasets on HDFS filesystem. It runs on Hadoop cluster
but also supports other database formats like Cassandra and HBase.

Cassandra: A key-value pair NoSQL database, with column family data
representation and asynchronous masterless replication.

o Cassandrais built upon an architecture similar to a DHT.
HBase: A key-value pair NoSQL database, with column family data

representation, with master-slave replication. It uses HDFS as underlying
storage.

Zookeeper: Adistributed coordination service for distributed applications.

o Itisbased on aPaxos algorithm variant called Zab.

30/54

Pig: Pigis a scripting interface over MapReduce for developers who prefer
scripting interface over native Java MapReduce programming.

Hive: Hive is a SQL interface over MapReduce for developers and analysts
who prefer SQL interface over native Java MapReduce programming.

Mahout: A library of machine learning algorithms, implemented on top of
MapReduce, for finding meaningful patternsin HDFS datasets.

Yarn: A system to schedule applications and services on an HDFS cluster and
manage the cluster resources like memory and CPU.

Flume: Atool to collect, aggregate, reliably move and ingest large amounts of
data into HDFS.

..and many others!

31/54

Spark

MapReduce programmability

e Most applications require multiple MR steps.
o Google indexing pipeline: 21 steps
o Analytics queries (e.g., count clicks and top-K): 2-5 steps

o lterative algorithms (e.g., PageRank): 10s of steps

e Multi-step jobs create spaghetti code
o 21 MRsteps — 21 mapper + 21 reducer classes

o Lots of boilerplate code per step

Chaining MapReduce jobs.

33/54

Problems with MapReduce

e Overtime, MapReduce use cases showed two major limitations:
o not all algorithms are suited for MapReduce.
= e.g., alinear dataflow is forced.

o itisdifficult to use for exploration and interactive programming.

= e.g., inside a notebook.

o there aresignificant performance bottlenecks in iterative algorithms that need to reuse
intermediate results.

= e.g., saving intermediate results to stable storage (HDFS) is very costly.

e Thatis,MapReduce does not compose so well for large applications.

e Forthisreason,dozens of high level frameworks and specialized systems
were developed.

o e.g., Pregel, Dremel, Fl, Drill, GraphLab, Storm, Impala, etc.

34/54

Spark

APACHE

Soark

e Like Hadoop MapReduce, Spark is a framework for performing distributed
computations.

e Unlike various earlier specialized systems, the goal of Spark is to generalize
MapReduce.

e Two small additions are enough to achieve that goal:
o fast datasharing

o general direct acyclic graphs (DAGs).

e Designed for data reuse and interactive programming.

35/54

Programmability

1 pubiile aless SeeiCewss |
] pdlds atatiles cless Veheelee S
satands Mappecuib e, Teel, Test, erw e es]

prinate Fiasl siefis Dovwe leble s o sm Sedmefhsbled)
Peisate Test saod = wme Partl))

-Il--ll-lll)m-r Towt el I.-l-nu-n

ity = . naliar ﬂllh
-Iu Tihe haalesvs Yebesl)} |
el et (00 mmat Renasi |)
FEEEEY o e,)

WOk

dag wem = 8
e (Duinepisbie sel ¢ wwlees)
? wem = val.giils
m bl
™ renall. et lnamd
] iastenl . w Teley. Fensli))

Pl AT vl ERESTAT T gl] B T DeeT s

i saraagll e . aegal gt i Leghega b

" e S0 B0 B0 IR0 TBEERS | sl s (sgme | sssteth)
L Syntas. sl

- i
i Juk jub = mme Debdese? . Tl owet)

o
:- SRR 870 Laa s { D0 Ul . :I-I-ol-i
Jole et A By N Mt 0 L]
" 1 T i Gt e Ll L)
iy Wer st L = B 0 = eVerkegs, gt - Ly s=dl |
5 b L U T L g] i, i Bl s e g f < 00

Ll Sy L i
F L NP T -ulml.-'m Fdaile

val f = sc.textFile(inputPath)

val w = f.flatMap(l => L.split(" ")).map(word => (word, 1)).cache()

w.reduceByKey(_ + _).saveAsText(outputPath)

WordCount in 3 lines of Spark

WordCount in 50+ lines of Java MR

See also Spark examples

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015.

36/54

https://spark.apache.org/examples.html
https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Performance

Time for sorting 100 T'B of data:

2013 Record: 2100 machines §§§§§§§§§§
Hadoop
mines [
2014 Record: 207 machines E
Spark °

23 minutes -

Credits: sortbenchmark.org 37/54

http://sortbenchmark.org/

RDD

e Programsin Spark are written in terms of a Resilient Distributed Dataset
(RDD) abstraction and operations on them.

e An RDD is a fault-tolerant read-only, partitioned collection of records.

o Resilient: built for fault-tolerance (it can be recreated).

o Distributed: content is divided into atomic partitions, usually stored in memory and across
multiple nodes.

o Dataset: collection of partitioned data with primitive values or values of values.

e RDDs canonly be created through deterministic operations on either:

o datainstable storage, or

o other RDDs.

38/54

myRDD : RDD

Partition

Array

-~
X

Partition

Partition

Partition

TTTTTTTTT

Memory
Partition

[AERRRREN

Memory
Partition

Memaory
Partition

Credits: Tony Duarte

TTTTTTTTT

Memaory
Partition

NN

https://www.slideshare.net/sparkInstructor/apache-spark-rdd-101

Operations on RDDs
e Transformations: f(RDD) — RDD’

o Coarse-grained operations only (a la pandas/numpy).

= |t is not possible to write to a single specific location in an RDD.
o Lazy evaluation (not computed immediately).

o eg.,mapOrfilter.

e Actions: f(RDD) — v

o Triggers computation.

o e.g.,count.

e Theinterface also offers explicit persistence mechanisms to indicate that an
RDD will be reused in future operations.

o This allows for significant internal optimizations.

40/ 54

Workflow

textFile =

sc.textFile(”SomeFile.txt"”)

) /
)
\ /

RDD

Transformations

Value

linesWithSpark.count()
74

linesWithSpark. first()
Apache Spark

linesWithSpark = textFile.filter(lambda line: "Spark” in line)

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015.

41/54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

Tines = spark.textFile(“hdfs://...”) Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: “mysql” in s).count()

Worker

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015. 42 /54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various

patterns.
Tines = spark.textFile(“hdfs://...") Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”)) Tos

messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: “mysql” in s).count()

=
T

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015. 42 /54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

Tines = spark.textFile(“hdfs://...") Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: “mysql” in s).count()

b=t
T
I iEEiE Iv

Block 2

~=q]|

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015. 42 /54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various

patterns.
Cache 1,
Tines = spark.textFile(“hdfs://...") Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”)) Tos

messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: “mysql” in s).count()

Process
& Cache
Data

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015. 42 /54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various

patterns.

Tines = spark.textFile(“hdfs://...
errors = lines.filter(lambda s: s.
messages = errors.map(lambda s: s.

messages.cache()

messages.filter(lambda s: “mysql”

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015.

Cache 1

") Worker
startswith(“ERROR™)) R

split("\t”) [2])

in s).count() Cache 2

—_
—=
ﬁﬁ@l“"

Block 2

I

42/54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

Cache 1
Tines = spark.textFile(“hdfs://...") Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”))
messages = errors.map(lambda s: s.split("\t")[2])

. Block 1
messages.cache() ~u |

messages.filter(lambda s: “mysql” in s).count() Cache 2

messages.filter(lambda s: “php” in s).count()

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015.

42/54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various

patterns.
Cache 1
Tines = spark.textFile(“hdfs://...") Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”)) o
messages = errors.map(lambda s: s.split("\t")[2]) IBbckl

messages.cache()

messages.filter(lambda s: “mysql” in s).count() Cache 2
messages.filter(lambda s: “php” in s).count() Worker

—_
—=
ﬁﬁ@l“"

Block 2

I

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015. 42 /54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various

patterns.
Cache 1,
Tines = spark.textFile(“hdfs://...") Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”)) Tos

messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

Process

from

Cache from
Cache

Process

iR

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015. 42 /54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various

patterns.
Cache 1
Tines = spark.textFile(“hdfs://...") Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”)) o
messages = errors.map(lambda s: s.split("\t")[2]) IBbckl

messages.cache()

messages.filter(lambda s: “mysql” in s).count() Cache 2

messages.filter(lambda s: “php” in s).count()

—_
—=
ﬁﬁ@l“"

Block 2

I

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark".2015. 42 /54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Rich, high-level API

map reduce
filter count

sort fold
groupBy reduceByKey
union groupByKey

Jjoin cogroup

zip

sample
take
first
partitionBy
mapWith
pipe

save

43/54

Lineage

e RDDs need not be materialized at all times.

e Instead,an RDD internally stores how it was derived from other datasets (its
lineage) to compute its partitions from data in stable storage.
o This derivation is expressed as coarse-grained transformations.

e Therefore, a program cannot reference an RDD that it cannot reconstruct
after a failure.

lines

l filter(_.startsWith("ERROR"))

-

errors

y filter(_.contains(‘HDFS”)))
HDFS errors
y map(__split(\t)(3))
time fields 1

44/54

newRDD

Credits: Tony Duarte

= myRDD.map (myfunc)

myRDD : RDD

Array

Partition

Partition

\

Partition

stores operation:
map (myfunc)

//
newRDD : mappedRDlx

) dependency on myRDD

Partition

TITTTTITTT

Memory
Partition

[RERRREE N

Memory
Partition

Memory
Partition

TTTTTTITTT

Memory
Partition

il ianll

https://www.slideshare.net/sparkInstructor/apache-spark-rdd-101

Representing RDDs

e RDDs are built around a graph-based representation (a DAG).

e RDDsshare acommon interface:

o Lineage information:

= Set of partitions.

= List of dependencies on parents RDDs.

= Function to compute a partition (as an iterator) given its parents.
o Optimized execution (optional):

= Preferred locations for each partition.

= Partitioner (hash, range)

46/ 54

Narrow Dependencies: Wide Dependencies:

- Ew - = -
— - &
map, filter) groupByKey

/ (@

= —

— (-

i— join with inputs

Eunion co-partitioned join with inputs not

co-partitioned

Dependencies

e Narrow dependencies: each partition of the parent RDD is used by at most
one partition of the child RDD.

o Allow for pipelined execution on one node.

o Recovery after failure is more efficient with a narrow dependency, as only the lost parents
partitions need to be recomputed.

e Wide dependencies: multiple child partitions may depend on a parent
partition.

o A child partition requires data from all its parents to be recomputed.

47/ 54

Execution process

RDD Objects DAG Scheduler

N G
‘}‘:HI

DAG || TaskSet
I

rddl.join(rdd2)
.groupBy(..)
Filter(.)

split graph into
stages of tasks

submit each

build operator DAG stage as ready

Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015.

retry failed or
straggling tasks

cluster manager

Task Scheduler Worker
Cluster
manager Threads
Task Block
> '
manager
launch tasks via execute tasks

store and serve
blocks

48/ 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Job scheduler

e Whenever an action is called, the scheduler examines that RDD's lineage
graph to build a DAG of stages to execute.

e Eachstage contains as many pipeline transformations with narrow
dependencies as possible.

e The boundaries of the stages are
o the shuffle operations required for wide dependencies, or

o already computed partitions that can short-circuit the computation of a parent RDD.

49/54

e The scheduler launches tasks to a lower-level scheduler to compute missing
partitions from each stage until it has computed the target RDD.

o Onetask per partition.

e Tasks are assigned to machines based on data locality.

50/54

Fault tolerance

e If atask fails, it is rescheduled on another node, as long as its stage's parents

are still available.

e If some stages have become unavailable, all corresponding tasks are
resubmit to compute the missing partitions in parallel.

_140
£ 120
£ 100
80
60
40
20

0

]

Iteratrion t

"No Failure
® Failure in the 6th lteration

~—

©
o N @ 9~ O
o o o o o o

119

57

w
[Te]

1 2 3 4 5 6 7 8 9 10
Iteration

Figure 11: Iteration times for k-means in presence of a failure.
One machine was killed at the start of the 6th iteration, resulting
in partial reconstruction of an RDD using lineage.

51/54

Dataflow programming

e Spark builds upon the dataflow programming paradigm.

e Dataflow programming models a program as a directed graph of the data
flowing between operations.

e Anoperation runs as soon as all of its inputs become valid.

e Dataflow languages are inherently parallel and work well in large,
decentralized systems.
e Modern examples:
o Scala
o Spark

o Tensorflow

52/54

Summary

e High-level abstractions enable cloud programming over clusters.
o Without having to handle parallelization, data distribution, load balancing, fault tolerance, ...

e MapReduceis a parallel programming model based on map and reduce
operations.

o Best suited for embarrassingly parallel and linear tasks.

o Itssimplicity is a disadvantage for complex iterative programs for interactive exploration.

e Spark generalizes MapReduce by making use of:
o fast data sharing (data resides in memory)

o general direct acyclic graphs of operations.

53/54

The end.

53/54

References

e Dean, Jeffrey,and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51.1 (2008): 107-
113.

e Zaharia, Mateij, et al. "Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing." Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012.

e Xin,Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015.

54/54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

