
Large-scale Data Systems
Lecture 9: Cloud computing

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 54

http://localhost:8001/g.louppe@uliege.be

Today

How do we program this thing?

MapReduce

Spark

2 / 54

Dealing with lots of data
Example:

+ trillion web pages exabytes.

~ hard drives () just to store the web.

Assuming a data transfer rate of , it would require + years

for a single computer to read the web!

And even more to make any useful usage of this data.

Solution: spread the work over many machines.

130 × 50KB = 6.5

6500000 1TB

200MB/s 1000

3 / 54

Traditional network programming
Message-passing between nodes (MPI, RPC, etc).

Really hard to do at scale (for 1000s of nodes):

How to split problem across nodes?

Important to consider network and data locality.

How to deal with failures?

a 10000-node clusters sees 10 faults/day.

Even without failure: stragglers.

Some nodes might be much slower than others.

4 / 54

Almost nobody does message-passing anymore!∗

―
*: except in niches, like scienti�c computing. 5 / 54

Data-parallel models
Restrict and simplify the programming interface so that the system can do
more automatically.

"Here is an operation, run it on all of the data".

I do not care where it runs (you schedule that).

In fact, feel free to run it twice on different nodes if that can help.

6 / 54

History

7 / 54

MapReduce

8 / 54

What is MapReduce?
MapReduce is a parallel programming model for processing distributed data on a
cluster.

It comes with a simple high-level API limited to two operations: map and reduce,
as inspired by Lisp primitives:

map: apply function to each value in a set.

(map 'length '(() (a) (a b) (a b c))) (0 1 2 3)

reduce: combines all the values using a binary function.

(reduce #'+ '(1 2 3 4 5)) 15

→

→

9 / 54

MapReduce is best suited for embarrassingly parallel tasks.

When processing can be broken into parts of equal size.

When processes can concurrently work on these parts.

This abstraction makes it possible to not worry about handling

parallelization

data distribution

load balancing

fault tolerance

10 / 54

Programming model
Map: input key/value pairs intermediate key/value pairs

User function gets called for each input key/value pair.

Produces a set of intermediate key/value pairs.

Reduce: intermediate key/value pairs result �les

Combine all intermediate values for a particular key through a user-de�ned function.

Produces a set of merged output values.

→

→

11 / 54

Examples

Count URL access frequency

Find the frequency of each URL in web logs.

Map: process logs of web page access. Produce pairs.

Reduce: add all values for the same URL.

Is this ef�cient?

Reverse web-link graph

Find where page links come from.

Map: output pairs for each link in a web page .

Reduce: concatenate the list of all source URLs associated with a target.

Distributed grep

Search for words in lots of documents.

Map: emit a line if it matches a given pattern. Produce pairs.

Reduce: copy the intermediate data to the output.

(url, 1)

(target, source) target source

(file, line)

12 / 54

Under the hood
Map worker

Map:

Map calls are distributed across machines by automatically partitioning the input data into

shards.

Parse the input shards into input key/value pairs.

Process each input pair through a user-de�ned map function to produce a set of intermediate

key/value pairs.

Write the result to an intermediate �le.

Partition:

Assign an intermediate result to one of reduce tasks based on a partitioning function.

Both and the partitioning function are user de�ned.

M

R

R

13 / 54

Reduce worker

Sort:

Fetch the relevant partition of the output from all mappers.

Sort by keys.

Different mappers may have output the same key.

Reduce:

Accept an intermediate key and a set of values for the key.

For each unique key, combine all values through a user-de�ned reduce function to form a smaller

set of values.

14 / 54

Overview

15 / 54

Step 1: Split input �les

Break up the input data into shards (typically).M 64MB

16 / 54

Step 2: Fork processes

Start up many copies of the program on a cluster of machines.

1 master: scheduler and coordinator

Lots of workers

Idle workers are assigned either:

map tasks

each works on a shard

there are map tasks

reduce tasks

each works on intermediate �les

there are reduce tasks

M

R

17 / 54

Step 3: Map task

Read content of the input shard assigned to it.

Parse key/value pairs out of the input data.

Pass each pair to a user-de�ned map function.

Produce (one or more) intermediate key/value pairs .

These are buffered in memory.

(k, v)

(k , v)′ ′

18 / 54

Step 4: Create intermediate �les

Intermediate key/value pairs produced by the user's map function

are periodically written to local disk.

These �les are partitioned into regions by a partitioning function, one for each reduce task.

e.g., hash(key) mod R

Notify master when complete.

Pass locations of intermediate data to the master.

Master forwards these locations to the reduce workers.

[Q] What is the purpose of the partitioning function?

(k , v)′ ′

R

19 / 54

Step 5: Sorting/Shuf�ing

Reduce worker get noti�ed by master about the location of the intermediate
�les associated to their partition.

RPC to read the data from the local disks for the map workers.

When the reduce worker reads intermediate data for its partition:

it sorts the data by intermediate keys .

all occurrences associated to a same key are grouped together.

k′

vi
′

20 / 54

Step 6: Reduce tasks

The sorting phase grouped data sharing a unique intermediate key.

The user-de�ned reduce function is given the key and the set of intermediate

values for that key.

The output of the reduce function is appended to an output �le.

(k , (v , v , v , ...))′
1
′

2
′

3
′

21 / 54

Step 7: Return to user

When all Map and Reduce tasks have completed, the master wakes up the
user program.

The MapReduce call in the user program returns and the program can
resume execution.

The output of the operation is available in output �les.R

22 / 54

Example: Counting words

See also the Hadoop tutorial.

23 / 54

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Wide applicability

Number of MapReduce programs in Google code source tree.

24 / 54

Fault tolerance
Master pings each worker periodically.

If no response is received within a certain delay, the worker is marked as
failed.

Map or Reduce tasks given to this worker are reset back to the initial state
and rescheduled for other workers.

Task completion is committed to master to keep track of history.

Exercise

What abstraction does this use?

What if the master node fails? How would you �x that?

25 / 54

Redundant execution
Slow workers signi�cantly lengthen completion time

Because of other jobs consuming resources on machine

Bad disks with soft errors transfer data very slowly

Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup copies of tasks

Whichever one �nishes �rst "wins"

Effect: Dramatically shortens job completion time

26 / 54

Locality
Input and output �les are stored on a distributed �le system.

e.g., GFS or HDFS.

Master tries to schedule Map workers near the data they are assigned to.

e.g., on the same machine or in the same rack.

often, MapReduce is run concurrently with GFS on the same nodes.

This results in thousands of machines reading input at local disk speed.

Without this, rack switches limit read rate.

27 / 54

Google, 2004.

28 / 54

Hadoop Ecosystem

29 / 54

Hadoop HDFS: A distributed �le system for reliably storing huge amounts of
unstructured, semi-structured and structured data in the form of �les.

Hadoop MapReduce: A distributed algorithm framework for the parallel
processing of large datasets on HDFS �lesystem. It runs on Hadoop cluster
but also supports other database formats like Cassandra and HBase.

Cassandra: A key-value pair NoSQL database, with column family data
representation and asynchronous masterless replication.

Cassandra is built upon an architecture similar to a DHT.

HBase: A key-value pair NoSQL database, with column family data
representation, with master-slave replication. It uses HDFS as underlying
storage.

Zookeeper: A distributed coordination service for distributed applications.

It is based on a Paxos algorithm variant called Zab.

30 / 54

Pig: Pig is a scripting interface over MapReduce for developers who prefer
scripting interface over native Java MapReduce programming.

Hive: Hive is a SQL interface over MapReduce for developers and analysts
who prefer SQL interface over native Java MapReduce programming.

Mahout: A library of machine learning algorithms, implemented on top of
MapReduce, for �nding meaningful patterns in HDFS datasets.

Yarn: A system to schedule applications and services on an HDFS cluster and
manage the cluster resources like memory and CPU.

Flume: A tool to collect, aggregate, reliably move and ingest large amounts of
data into HDFS.

... and many others!

31 / 54

Spark

32 / 54

MapReduce programmability
Most applications require multiple MR steps.

Google indexing pipeline: 21 steps

Analytics queries (e.g., count clicks and top-K): 2-5 steps

Iterative algorithms (e.g., PageRank): 10s of steps

Multi-step jobs create spaghetti code

21 MR steps 21 mapper + 21 reducer classes

Lots of boilerplate code per step

Chaining MapReduce jobs.

→

33 / 54

Problems with MapReduce
Over time, MapReduce use cases showed two major limitations:

not all algorithms are suited for MapReduce.

e.g., a linear data�ow is forced.

it is dif�cult to use for exploration and interactive programming.

e.g., inside a notebook.

there are signi�cant performance bottlenecks in iterative algorithms that need to reuse
intermediate results.

e.g., saving intermediate results to stable storage (HDFS) is very costly.

That is, MapReduce does not compose so well for large applications.

For this reason, dozens of high level frameworks and specialized systems
were developed.

e.g., Pregel, Dremel, FI, Drill, GraphLab, Storm, Impala, etc.

34 / 54

Spark

Like Hadoop MapReduce, Spark is a framework for performing distributed
computations.

Unlike various earlier specialized systems, the goal of Spark is to generalize
MapReduce.

Two small additions are enough to achieve that goal:

fast data sharing

general direct acyclic graphs (DAGs).

Designed for data reuse and interactive programming.

35 / 54

Programmability

See also Spark examples

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 36 / 54

https://spark.apache.org/examples.html
https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Performance
Time for sorting of data:100TB

―
Credits: sortbenchmark.org 37 / 54

http://sortbenchmark.org/

RDD
Programs in Spark are written in terms of a Resilient Distributed Dataset
(RDD) abstraction and operations on them.

An RDD is a fault-tolerant read-only, partitioned collection of records.

Resilient: built for fault-tolerance (it can be recreated).

Distributed: content is divided into atomic partitions, usually stored in memory and across
multiple nodes.

Dataset: collection of partitioned data with primitive values or values of values.

RDDs can only be created through deterministic operations on either:

data in stable storage, or

other RDDs.

38 / 54

―
Credits: Tony Duarte 39 / 54

https://www.slideshare.net/sparkInstructor/apache-spark-rdd-101

Operations on RDDs

Transformations:

Coarse-grained operations only (à la pandas/numpy).

It is not possible to write to a single speci�c location in an RDD.

Lazy evaluation (not computed immediately).

e.g., map or filter.

Actions:

Triggers computation.

e.g., count.

The interface also offers explicit persistence mechanisms to indicate that an
RDD will be reused in future operations.

This allows for signi�cant internal optimizations.

f(RDD) → RDD’

f(RDD) → v

40 / 54

Work�ow

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 41 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Example: Log mining

Goal: Load error messages in memory, then interactively search for various
patterns.

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 42 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

map

filter

sort

groupBy

union

join

...

reduce

count

fold

reduceByKey

groupByKey

cogroup

zip

...

sample

take

first

partitionBy

mapWith

pipe

save

...

Rich, high-level API

43 / 54

Lineage
RDDs need not be materialized at all times.

Instead, an RDD internally stores how it was derived from other datasets (its
lineage) to compute its partitions from data in stable storage.

This derivation is expressed as coarse-grained transformations.

Therefore, a program cannot reference an RDD that it cannot reconstruct
after a failure.

44 / 54

newRDD = myRDD.map(myfunc)

―
Credits: Tony Duarte 45 / 54

https://www.slideshare.net/sparkInstructor/apache-spark-rdd-101

Representing RDDs
RDDs are built around a graph-based representation (a DAG).

RDDs share a common interface:

Lineage information:

Set of partitions.

List of dependencies on parents RDDs.

Function to compute a partition (as an iterator) given its parents.

Optimized execution (optional):

Preferred locations for each partition.

Partitioner (hash, range)

46 / 54

Dependencies

Narrow dependencies: each partition of the parent RDD is used by at most
one partition of the child RDD.

Allow for pipelined execution on one node.

Recovery after failure is more ef�cient with a narrow dependency, as only the lost parents
partitions need to be recomputed.

Wide dependencies: multiple child partitions may depend on a parent
partition.

A child partition requires data from all its parents to be recomputed.

47 / 54

Execution process

―
Credits: Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015. 48 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Job scheduler

Whenever an action is called, the scheduler examines that RDD's lineage
graph to build a DAG of stages to execute.

Each stage contains as many pipeline transformations with narrow
dependencies as possible.

The boundaries of the stages are

the shuf�e operations required for wide dependencies, or

already computed partitions that can short-circuit the computation of a parent RDD.

49 / 54

The scheduler launches tasks to a lower-level scheduler to compute missing
partitions from each stage until it has computed the target RDD.

One task per partition.

Tasks are assigned to machines based on data locality.

50 / 54

Fault tolerance
If a task fails, it is rescheduled on another node, as long as its stage's parents
are still available.

If some stages have become unavailable, all corresponding tasks are
resubmit to compute the missing partitions in parallel.

51 / 54

Data�ow programming
Spark builds upon the data�ow programming paradigm.

Data�ow programming models a program as a directed graph of the data
�owing between operations.

An operation runs as soon as all of its inputs become valid.

Data�ow languages are inherently parallel and work well in large,
decentralized systems.

Modern examples:

Scala

Spark

Tensor�ow

52 / 54

Summary
High-level abstractions enable cloud programming over clusters.

Without having to handle parallelization, data distribution, load balancing, fault tolerance, ...

MapReduce is a parallel programming model based on map and reduce
operations.

Best suited for embarrassingly parallel and linear tasks.

Its simplicity is a disadvantage for complex iterative programs for interactive exploration.

Spark generalizes MapReduce by making use of:

fast data sharing (data resides in memory)

general direct acyclic graphs of operations.

53 / 54

The end.

53 / 54

References
Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simpli�ed data
processing on large clusters." Communications of the ACM 51.1 (2008): 107-
113.

Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing." Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012.

Xin, Reynold. "Stanford CS347 Guest Lecture: Apache Spark". 2015.

54 / 54

https://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

