
Large-scale Data Systems
Lecture 8: Blockchain

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 75

http://localhost:8001/g.louppe@uliege.be

Blockchain:

Hash functions and data structures

Digital signatures

Simple (�ctitious) cryptocurrencies

Consensus in the blockchain

Bitcoin and friends

Today

Most of today's lecture is based on "Bitcoin and cryptocurrency technologies: A
comprehensive introduction" by Narayanan et al.

2 / 75

Hash functions and data structures

3 / 75

Hash functions
A hash function is a mathematical function with the following properties:

Its input can be any string of any size.

It produces a �xed-size output (e.g. 256 bits).

It is ef�ciently computable.

E.g., computing the hash of an -bit string should be .

Security properties

Collision resistance

Hiding

Puzzle-friendliness

H

n O(n)

4 / 75

Collision resistance
A hash function is said to be collision resistant if it is infeasible/dif�cult to �nd

two values and such that yet .

H

x y x ≠ y H(x) = H(y)

5 / 75

Collisions do exist. But can anyone �nd them?

6 / 75

How to �nd a collision:

Pick distinct values and compute the hashes of each of them.

At least one pair of inputs must collide!

This works no matter the hash function . But it takes too long to matter!

2 + 1256

H

7 / 75

Hiding
A hash function is said to be hiding if when a secret value is chosen from a

probability distribution that has high entropy, then given , it is infeasible

to �nd .

H r

H(r∣∣x)
x

8 / 75

Application: Commitments

A commitment is the digital analog of taking a value, sealing it in an envelope, and
putting that envelope out on the table where everyone can see it.

Commit to value (the content of the envelope).

Reveal it later (open the envelope).

9 / 75

Commitment scheme

:

The commit function takes a message and a (secret) key as input and returns
a commitment pair .

: The verify function takes a commitment, a key and

a message as inputs. It returns true iff .

Security properties

Hiding: given , it is infeasible to �nd

.

Binding: Infeasible to �nd such that

 is true, nor to change the key.

commit(msg, key) := (H(msg∣∣key),H(key))

com

verify(com, key,msg)
com = commit(msg, key)

com := (H(msg∣∣key),H(key))
msg

msg ≠ msg′

H(msg∣∣key) = H(msg ∣∣key)′

10 / 75

Puzzle-friendliness
A hash function is said to be puzzle friendly if for every possible -bit output

value , if is chosen from a distribution with high entropy and made public, then

it remains infeasible to �nd such that in time signi�cantly less

than .

H n

y k

x y = H(k∣∣x)
2n

11 / 75

Application: Search puzzle

Given a puzzle ID and a target set , try to �nd a solution such that

.

Puzzle-friendliness implies that no solving strategy is much better than
trying random values of .

Later, we will see that mining is a computational puzzle.

i Y x

H(i∣∣x) ∈ Y

x

12 / 75

SHA-256 hash function

SHA-256 uses the Merkle–Damgård construction to turn a �xed-length collision
resistant compression function into a hash function that accepts arbitrary-

length inputs.

c

13 / 75

Hash pointers
A hash pointer is a pointer to where some information is stored, together with a
cryptographic hash of this information. A hash pointer can be used for:

retrieving the information associated to the pointer,

verifying that the information has not changed.

14 / 75

Key idea: build data structures with hash pointers

15 / 75

Blockchain
A blockchain is a linked list that makes use of hash pointers.

In a regular linked list, each block has data as well as a pointer to the previous
block in the list.

In a blockchain, the previous-block pointers are replaced by hash pointers.

16 / 75

Tamper-evident log

If an adversary modi�es data anywhere in the blockchain, it will result in the
hash pointer in the following block being incorrect.

If we stored the head of the list, then even if an adversary modi�es all
pointers to be consistent with modi�ed data, the head pointer will be
incorrect and the change would be detected.

17 / 75

Merkle tree
A merkle tree is a binary tree that makes use of hash pointers.

18 / 75

Proof of membership

Proving that a data block is included in the tree only requires showing the blocks
in the path from that data block to the root. Hence .O(logN)

19 / 75

Digital signatures

20 / 75

Digital signatures
Digital signatures is the second cryptographic primitive we will need for
implementing cryptocurrencies.

A digital signature is the digital analog to a handwritten signature on paper:

Only you can make your signature, but anyone can verify that it is valid.

Signatures are tied to a particular document. They cannot be cut-and-pasted
to another document to indicate your agreement or endorsement.

Bitcoin makes use of the Elliptic Curve Digital Signature Algorithm (ECDSA) for
digital signatures.

21 / 75

API for digital signatures

: secret signing key

: public veri�cation key

(sk, pk) := generateKeys(keysize)
sk

pk

sig := sign(sk,msg)

isValid := verify(pk,msg, sig)

22 / 75

Requirements

Valid signatures must verify.

Signatures are existentially unforgeable.

23 / 75

Simple (�ctitious) cryptocurrencies

24 / 75

Goofycoin
Rule 1: a designated entity (Goofy) can create new coins

To create a coin, Goofy generates a unique coin ID along with the statement
"CreateCoin [uniqueCoinID]".

Goofy computes the digital signature of this string with his secret signing key.

The string, together with Goofy's signature, is a coin.

Anyone can verify that the coin contains Goofy's valid signature of the
CreateCoin statement and is therefore a valid coin.

25 / 75

Rule 2: Whoever owns a coin can transfer it to someone.

Let's say Goofy wants to transfer a coin he created to Alice.

To do this, Goofy creates a new statement "Pay this to Alice", where

"this" is a hash pointer that references the coin in question,

Alice's identity is de�ned by her public signing key.

Alice can prove to anyone that she owns the coin because she can present
the data structure with Goofy's valid signature.

26 / 75

The recipient can pass on the coin again.

27 / 75

Double-spending attack

Let's say Alice passed her coin on to Bob by sending her signed statement,
but didn't tell anyone else.

She could create another signed statement that pays the same coin to
Chuck.

Both Bob and Chuck would have valid-looking claims to be the owner of this
coin.

Goofycoin does not solve the double-spending attack problem. For this reason, it
is not secure. 28 / 75

Scroogecoin
A designated and trusted entity (Scrooge McDuck) publishes an append-only
ledger containing the history of all transactions.

Append-only ensures that any data written to this ledger will remain forever
in the ledger.

Therefore, this can be used to prevent double spending by requiring that all
transactions are written in the ledger before they are accepted.

29 / 75

To implement the append-only ledger, Scrooge makes use of a blockchain, which
he will digitally sign.

The blockchain is a series of data blocks, each with one or more transaction(s)
in it.

Each block has the IDs of the transactions, the transaction's contents, and a
hash pointer to the previous block.

Scrooge digitally signs the �nal hash pointer, which binds all the data in this
entire structure, and he publishes the signature along with the blockchain.

30 / 75

In Bitcoin, the blockchain contains two different hash structures.

The �rst is a hash chain of blocks that links the different blocks to one
another.

The second is internal to each block and is a Merkle tree of transactions
within the blocks.

31 / 75

A transaction only counts if it is in the block chain signed by Scrooge.

Anybody can verify a transaction was endorsed by Scrooge by checking
Scrooge's signature on the block that records the transaction.

Scrooge makes sure that he does not endorse a transaction that attempts to
double spend an already spent coin.

If Scrooge tries to add or remove a transaction, or to change an existing
transaction, it will affect all following blocks published by Scrooge.

As long as the latest hash pointer published by Scrooge is monitored, the change will be obvious
and easy to catch.

32 / 75

Coin creation

Same as for Goofycoin, but we extend the semantics to allow for multiple
coins to be created per transaction.

Coins are referred to by a transaction ID and a coin's serial number in that
transaction.

33 / 75

A transaction is valid if:

The consumed coins are valid.

The consumed coins have not
already been consumed.

The total value out in the
transaction is to equal to the total
value in.

The transaction is validly signed
by all the owners of the
consumed coins in the
transaction.

Payments

A transaction consumes (and destroys) some coins and creates new coins of the
same total value.

34 / 75

Immutable coins

Coins cannot be transferred, subdivided or combined.

But we can obtain the same effect by using transactions. E.g., to subdivide:

create a new transaction;

consume your coins;

pay out two new coins (of half the value of the original coin) to yourself.

35 / 75

Scoorge cannot create fake transactions, because
he cannot forge other people's signatures.

However,

he could stop endorsing transactions from
some users, denying them service and making
their coins unspendable;

he could refuse to publish transactions unless
they transfer some mandated transaction fee
to him.

he can create as many coins for himself as he
wants.

Can the system operate without any central,
trusted party?

Do not worry.
I am honest.

36 / 75

Consensus in the blockchain

37 / 75

Decentralization
We want a decentralized cryptocurrency system without any central
(supposedly) trusted party.

Solution

Implement the currency protocol on top of a peer-to-peer network of nodes.

Each node maintains its own copy of the ledger.

38 / 75

When Alice wants to pay Bob, she broadcasts the transaction to all nodes in the
network. Each node updates its ledger accordingly.

Note that Bob's computer is not (necessarily) in the picture.

39 / 75

Who maintains the ledger?

Who has authority over which transactions are valid?

Who creates new coins?

Who determines how the rules of the system change?

How do coins acquire exchange values?

40 / 75

Consensus
For this peer-to-peer system to work:

All nodes must have the exact same copy of the ledger.

Therefore, they must agree on the transactions that are added in the ledger,
and in which order.

 They must reach consensus.⇒

41 / 75

How consensus could work

At any given time:

All nodes have a blockchain consisting of a sequence of blocks, each
containing a list of transactions they have reached consensus on.

Each node has a set of outstanding transactions it has heard about.

At regular intervals, every node in the system proposes its own outstanding
transaction pool to be included in the next block, using some consensus protocol.

42 / 75

Consensus is hard

Nodes may crash

Nodes may be malicious

Network is highly imperfect

Not all pairs of nodes connected

Faults in the network

Latency (no notion of global time)

43 / 75

Why not simply use a Byzantine fault-tolerant variant of Paxos?

It would never produce inconsistent results.

However

there are certain (rare) conditions in which the protocol may fail to make any progress,

no solution exists if less than of the nodes are honest.3
2

44 / 75

Additional constraints

Pseudonymity: we do not want nodes to have an identity.

Sybil attacks: we do not want an adversary to be able to spawn many nodes
(e.g., a majority) and take control of the system.

45 / 75

Implicit consensus
Assume the ability to select a random node in manner that is not vulnerable to
Sybil attacks, such that at least 50% of the time an honest node is picked.

Consensus algorithm

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. In each round, a random node gets to broadcast its block.

4. Other nodes accept the block only if all transactions in it are valid (unspent,
valid signatures).

5. Nodes express their acceptance of the block by including its hash in the next
block they create.

Exercise
Which basic abstraction is random selection an implementation of?

46 / 75

Alice adds an item to her shopping cart on Bob's website. The server requests
payment.

Alice creates a transaction from her address to Bob's and broadcast it to the
network.

An honest node creates the next block and includes this transaction in that
block.

On seeing the transaction included in the blockchain, Bob concludes that
Alice has paid him and send the purchased item to Alice.

47 / 75

Double-spend attack

Assume the next random node happens to be controlled by Alice.

Since Alice gets to propose the block, she could propose one that ignores the
block that contains the payment to Bob.

Worse, she could make a transaction that transfers the same coin to an
address she controls.

Since the two transactions spend the same coins, only of them will be
included in the blockchain.

48 / 75

The double-spend attack success will depend on which block will ultimately end
up on the long-term consensus chain.

Policy upon forks

Honest nodes follow the policy that extends the longest valid branch.

In step 4 of implicit consensus, if an honest node discovers that the new
block belongs to a longer branch than what it thought was part of the
longest branch, then the node locally reorganizes its chain.

49 / 75

Bob the merchant's point of view:

Double-spend probability decreases exponentially with the number of
con�rmations.

Common heuristic: wait for 6 con�rmations before validating the
transaction.

50 / 75

Recap

Protection against invalid transactions is cryptographic, but enforced by
consensus.

Protection against double-spending is purely by consensus.

We are never 100% certain that a transaction is part of the consensus
branch. The guarantee is probabilistic.

Even with 1% of the total hashing power, Alice would have a hard time cheating on Bob.

The probability of mining six blocks in a row is .0.01 = 106 −12

51 / 75

Incentives
Assuming node honesty is problematic.

Instead, can we build incentives for nodes to behave honestly?

52 / 75

Incentive 1: block reward

The creator of a block gets to

include a special coin-creation transaction in the block

choose the recipient address of this transaction.

The value is �xed: currently 12.5 coins, but halves every 210000 blocks (~
every 4 years).

The block creator gets to collect the reward only if the blocks end up on the
long-term consensus branch.

53 / 75

Total supply of coins with time. The block reward is cut in half every 4 years,
limiting the total supply to 21 millions.

54 / 75

Incentive 2: transaction fees

The creator of a transaction can choose to make the output value less than
input value.

The remainder is a transaction fee and goes to the block creator.

Purely voluntary.

55 / 75

Proof of work
How does one select a node at random without being vulnerable to Sybil attacks?

Approximate the selection of a random node by instead selecting nodes in
proportion to a resource that (we hope) nobody can monopolize.

in proportion to computer power: proof of work (PoW)

in proportion to currency ownership: proof of stake (PoS)

How does one select nodes in proportion to their computing power?

Allow nodes to compete with one another by using their computing power.

This results in nodes being picked in proportion to that capacity.

56 / 75

PoW with hash puzzles

To create a block, �nd a such that

for some target .

If the hash function is secure, the only way to succeed is to try enough

nonces until getting lucky.

Node creators are called miners.

nonce

H(nonce∣∣previous hash∣∣tx ∣∣tx ∣∣...) < T1 2

T ≪ 2 ≈ 10256 77

H

57 / 75

Property 1: dif�cult to compute

As of 2018, the expected number of hashes to mine a block is .

Only some nodes bother to compete.

3 × 1022

58 / 75

Property 2: parameterizable cost

The target is adjusted periodically as a function of how much hashing

power has been deployed in the system by the miners.

The goal is to maintain an average time of 10 minutes between blocks.

T

59 / 75

Property 3: trivial to verify

The must be published as part of the block.

Hence, anyone can verify that

nonce

H(nonce∣∣previous hash∣∣tx ∣∣tx ∣∣...) < T1 2

60 / 75

51% attack
The whole system relies on the assumption that a majority of miners,
weighted by hash power, follow the protocol.

Therefore, the protocol is vulnerable to attackers that would detain 51% or
more of the total hashing power.

61 / 75

Bitcoin and friends

62 / 75

Bitcoin
The cryptocurrency protocol presented so far corresponds to the general
protocol used for Bitcoin (BTC).

Bitcoin was invented by an unknown person (or group of people) using the
name of Satoshi Nakamoto.

It was released as an open source software in 2009.

Its main goal is to establish a decentralized digital currency that is not tied to
a bank or government.

The estimated number of unique users is 3-6 million.

63 / 75

Trading

Bitcoin can be used to buy or sell goods.

Bitcoin can be bought and sold like any other currency.

Bitcoin ATMs even exist in some countries!

64 / 75

Volatility

As any currency, BTC can be exchanged for other currencies (e.g. USD or EUR).

The current exchange rate (November 1, 2018) is 1 BTC = 6358 USD.

The price is highly volatile and subject to speculation.

65 / 75

Mining as a business

A mining farm.

66 / 75

Extreme competition

Global hash rate over time.

67 / 75

Energy sinkhole

68 / 75

Mining economics

See also the Bitcoin Mining Pro�t Calculator.

69 / 75

https://jblevins.org/btcmpc/

Mining Bitcoins in IcelandMining Bitcoins in Iceland
Watch laterWatch later ShareShare

70 / 75

https://www.youtube.com/watch?v=tt0idBrjpbk
https://www.youtube.com/channel/UCc-PaGnH1qBc_1XDoG1rK2Q

Bitcoin in Switzerland | Cointelegraph DocumentaryBitcoin in Switzerland | Cointelegraph Documentary
Watch laterWatch later ShareShare

71 / 75

https://www.youtube.com/watch?v=fgrD0Bse70A
https://www.youtube.com/channel/UCRqBu-grVX1p97WaX4d-OuQ

Other cryptocurrencies
BTC is only one of many cryptocurrencies. Popular cryptocurrencies include:

ETH

XRP

LTC

72 / 75

Applications
A blockchain is nothing else than a continuously growing list of records.

It is secure by design, with high Byzantine fault tolerance.

Blockchains can therefore be used to store any kind sensitive information
that should not be altered.

73 / 75

Summary
The blockchain is a linked list with hash pointers.

It can be used for implementing a ledger that stores sensitive information
that should not be tampered with.

Decentralization requires consensus.

In Bitcoin, consensus is achieved by proof-of-work, which provides high
Byzantine fault tolerance.

74 / 75

The end.

74 / 75

References
Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system." (2008).

Narayanan, Arvind, et al. Bitcoin and cryptocurrency technologies: a
comprehensive introduction. Princeton University Press, 2016.

75 / 75

