
Large-Scale Data Systems
Lecture 7: Distributed Hash Tables

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 46

http://localhost:8001/g.louppe@uliege.be

Today
How to design a large-scale distributed system similar to a hash table?

Chord

Kademlia

2 / 46

Hash tables
A hash table is a data structure that implements an associative array abstract
data type, i.e. a structure than can map keys to values.

It uses a hash function to compute an index into an array of buckets or slots,
from which the desired value can be found.

Ef�cient and scalable: look-up and store operations (on a single

machine).

hash
functionkeys

John Smith

Lisa Smith

Sandra Dee

buckets

00

01 521-8976

02 521-1234

03

: :

13

14 521-9655

15

O(1)

3 / 46

Distributed hash tables
A distributed hash table (DHT) is a class of decentralized distributed systems that
provide a lookup service similar to a hash table.

Extends upon multiple machines in the case when the data is so large we
cannot store it on a single machine.

Robust to faults.

4 / 46

Interface

Properties

When is completed, and are reliably stored on the DHT.

If is stored on the DHT, a process will eventually �nd a node which stores .

put(k, v)

get(k)

put(k, v) k v

k k

5 / 46

Chord

6 / 46

Chord
Chord is a protocol and algorithm for a peer-to-peer distributed hash table.

It organizes the participating nodes in an overlay network, where each node
is responsible for a set of keys.

Keys are de�ned as -bit identi�ers, where is a prede�ned system

parameter.

The overlay network is arranged in a identi�er circle ranging from to

.

A node identi�er is chosen by hashing the node IP address.

A key identi�er is chosen by hashing the key.

Based on consistent hashing.

Supports a single operation: .

Returns the host which holds the data associated with the key.

m m

0
2 − 1m

lookup(k)

7 / 46

Consistent hashing
Traditional hashing

Set of bins.

Key is assigned to a particular bin.

If changes, all items need to be rehashed.

E.g. when bin_id = hash(key) % num_bins.

n

k

n

8 / 46

Consistent hashing
Traditional hashing

Set of bins.

Key is assigned to a particular bin.

If changes, all items need to be rehashed.

E.g. when bin_id = hash(key) % num_bins.

Consistent hashing

Evenly distributes objects over bins.

When changes:

Only objects need to be rehashed.

Uses a deterministic hash function, independent of .

Chord makes use of SHA-1 as hash function

n

k

n

x n

n

O()
n
x

n

8 / 46

Consistent hashing in Chord assigns keys to nodes as follows:

Key is assigned to the �rst node whose identi�er is equal to or follows in

the identi�er space.

i.e., the �rst node on the identi�er ring starting from .

This node is called the successor node of , denoted .

Enable minimal disruption.

k k

k

k successor(k)

9 / 46

To maintain the consistent (hashing) mapping, let us consider a node which

1. joins: some of the keys assigned to are now assigned to .

Which?

2. leaves: All of 's assigned keys are assigned to .

n

successor(n) n

predecessor(n) < k ≤ n

n successor(n)

10 / 46

Routing
The core usage of the Chord protocol is to query a key from a client (generally a
node as well), i.e. to �nd .

Basic query

Any node stores its immediate successor , and no other

information.

If the key cannot be found locally, then the query is passed to the node's
successor.

Scalable, but operations are required.

Unacceptable in large systems!

Exercise
How to make lookups faster?

successor(k)

n successor(n)

O(n)

11 / 46

Finger table

In Chord, in addition to and pointers, each node

maintains a �nger table to accelerate lookups.

As before, let be the number of bits in the identi�er.

Every node maintains a routing (�nger) table with at most entries.

Entry in the �nger table of node :

First node that succeeds by at least on the identi�er circle.

Therefore,

successor predecessor

m

n m

1 ≤ k ≤ m n

s n 2k−1

s = successor((n+ 2) mod 2)k−1 m

12 / 46

Example

 bits max 4 entries in the table.

-th entry in �nger table:

m = 4 →

k s = successor((n+ 2) mod 2)k−1 m

13 / 46

Example: �rst entry

, n = 4 k = 1

s = successor((n+ 2) mod 2) = successor(5) = 5k−1 m

14 / 46

Example: second entry

, n = 4 k = 2

s = successor((n+ 2) mod 2) = successor(6) = 8k−1 m

15 / 46

Example: third entry

, n = 4 k = 3

s = successor((n+ 2) mod 2) = successor(8) = 8k−1 m

16 / 46

Example: fourth entry

, n = 4 k = 4

s = successor((n+ 2) mod 2) = successor(12) = 14k−1 m

17 / 46

Improved lookup

A lookup for now works as follows:

if falls between and , return .

otherwise, the lookup is forwarded at , where is the node in the �nger

table that most immediately precedes .

Since each node has �nger entries at power of two intervals around the
identi�er circle, each node can forward a query at least halfway along the
remaining distance between the node and the target key.

 nodes need to be contacted.

successor(k)

k n successor(n) successor(n)

n′ n′

k

O(logN)

18 / 46

// ask node n to find the successor of id

n.find_successor(id):

 if (id ∈ (n, successor]):

 return successor

 else:

 // forward the query around the circle

 n0 = closest_preceding_node(id)

 return n0.find_successor(id)

// search the local table for the highest predecessor of id

n.closest_preceding_node(id):

 for k = m downto 1:

 if (finger[k] ∈ (n, id)):

 return finger[k]

 return n

19 / 46

Example: �nding from

1. checks if is in the interval (4, 5].

2. No, checks its �nger table (starting from the last entry, i.e.,).

1. Is in the interval (4, 3)? Yes!

3. checks if is in the interval (14, 0].

4. No, checks its �nger table for closest preceding node.

1. Return .

5. checks if is in the interval (0, 4]. Yes!

 Node 0 is the preceding node of . Therefore

.

Of course, one could implement a mechanism that prevents from looking

up its own preceding node in the network.

successor(id = 3) node4

node4 id

node4 k = m

node14

node14 id

node14

node0

node0 id

→ k = 4
successor(id = 3) = node .successor = 40

node4

20 / 46

Join
We must ensure the network remains consistent when a node joins by

connecting to a node . This is performed in three steps:

1. Initialize the successor of .

2. Update the �ngers and predecessors of existing nodes to re�ect the addition
of .

3. Transfer the keys and their corresponding values to .

n

n′

n

n

n

21 / 46

Initializing 's successor

 learns its successor by asking to look them up.

// join a Chord ring containing node n'.

n.join(n'):

 predecessor = nil

 successor = n'.find_successor(n)

n

n n′

22 / 46

Periodic consistency check

// called periodically. n asks the successor

// about its predecessor, verifies if n's immediate

// successor is consistent, and tells the successor about n

n.stabilize():

 x = successor.predecessor

 if (x ∈ (n, successor)):

 successor = x

 successor.notify(n)

// n' thinks it might be our predecessor.

n.notify(n'):

 if (predecessor is nil or n' ∈ (predecessor, n))

 predecessor = n'

// called periodically. refreshes finger table entries.

// next stores the index of the finger to fix

n.fix_fingers():

 next = next + 1

 if (next > m):

 next = 1

 finger[next] = find_successor(n+2^{next-1})

23 / 46

Transferring keys

 can become the successor only for keys that were previously the

responsibility of the node immediately following .

 only needs to contact to transfer responsibility of all

relevant keys.

n

n

n successor(n)

24 / 46

Fault-tolerance
Failures

Since the successor (or predecessor) of a node may disappear from the
network (because of failure or departure), each node records a whole
segment of the circle adjacent to it, i.e., the nodes following it.

This successor list results in a high probability that a node is able to correctly
locate its successor (or predecessor), even if the network in question suffers
from a high failure rate.

Replication

Use the same successor-list to replicate the data on the segment!

r

25 / 46

Summary
Fast lookup , small routing table .

Handling failures and addressing replication (load balance) using same
mechanism (successor list).

Relatively small join/leave cost.

Iterative lookup process.

Timeouts to detect failures.

No guarantees (with high probability ...).

Routing tables must be correct.

O(logN) O(logN)

26 / 46

Kademlia

27 / 46

Kademlia
Kademlia is a peer-to-peer hash table with provable consistency and
performance in a fault-prone environment.

Con�guration information spreads automatically as a side-effect of key look-
ups.

Nodes have enough knowledge and �exibility to route queries through low-
latency paths.

Asynchronous queries to avoid timeout delays from failed nodes.

Minimizes the number of con�guration messages (guarantee).

160-bit identi�ers (e.g., using SHA-1 or some other hash function,
implementation speci�c).

Key-Value pairs are stored on nodes based on closeness in the identi�er
space.

Identi�er based routing algorithm by imposing a hierarchy (virtual overlay
network).

28 / 46

System description
Nodes are structured in an overlay network where they correspond to the leaves
of an (unbalanced) binary tree, with each node's position determined by the
shortest unique pre�x of its identi�er.

29 / 46

Node identi�ers are chosen at random in the identi�er space.

For a given node, Kademlia divides the binary tree into a series of
successively lower sub-trees that do not contain the node.

The highest sub-tree consists of the half of the binary tree not containing the node.

The next sub-tree consists of the half of the remaining tree not containing the node, etc.

Kamdelia ensures that every node knows at least one other node in each of
its sub-trees. This guarantees that any node can locate any other node given
its identi�er.

30 / 46

Node distance

The distance between two identi�ers is de�ned as

XOR is a valid, albeit non-Euclidean metric.

XOR captures the notion of distance between two identi�ers: in a fully-
populated binary tree of 160-bit IDs, it is the height of the smallest subtree
containing them both.

XOR is symmetric.

XOR is unidirectional.

d(x, y) = x⊕ y.

31 / 46

E.g., if the identi�er space is 3 bits, then the distance between IDs and is1 4

d(1, 4) = d(001 , 100) = 001 ⊕ 100 = 101 = 5.2 2 2 2 2

32 / 46

Node state

For every pre�x of size , every node keeps a list, called a k-

bucket, of (IP address, Port, ID) for nodes of distance between and of

itself.

Every k-bucket is sorted by time last seen (least recently seen �rst).

When a node receives a message, it updates the corresponding k-bucket for
the sender's identi�er. If the sender already exists, it is moved to the tail of
the list.

If the k-bucket is full, the node pings the least recently seen node and checks if it is still available.

Only if the node is not available it will replace it.

If available, the node is pushed back at the end of the bucket.

Policy of replacement only when a nodes leaves the network prevents Denial of Service (DoS)
attacks (e.g., �ushing routing tables).

0 ≤ i < 160
2i 2i+1

→

33 / 46

k-bucket

34 / 46

Interface
Kademlia provides four remote procedure calls (RPCs):

PING(id) returns (IP, Port, ID)

Probes the node to check whether it is still online.

STORE(key, value)

FIND_NODE(id) returns (IP, Port, ID) for the nodes it knows about closest to

ID.

FIND_VALUE(key) returns (IP, Port, ID) for the nodes it knows about closest

to the key, or the value if it maintains the key.

k

k

35 / 46

Node lookup

The most important procedure a Kademlia participant must perform is locating
the closest nodes to some given identi�er.

Kademlia achieves this by performing a recursive lookup procedure.

The initiator issues asynchronous FIND_NODE requests to (system

parameter) nodes from its closest non-empty k-bucket.

Parallel search with the cost of increased network traf�c.

Nodes return the closest nodes to the query ID.

Repeat and select the nodes from the new set of nodes.

Terminate when set doesn't change.

Possible optimization: choose nodes with lowest latency.

k

α

k

α

α

36 / 46

37 / 46

Storing data

Using the lookup procedure, storing and making data persistent is trivial.

 Send a STORE RPC to the closest nodes identi�ed by the lookup procedure.

To ensure persistence in the presence of node failures, every node
periodically republishes the key-value pair to the closest nodes.

Updating scheme can be implemented. For example: delete data after 24
hours after publication to limit stale information.

→ k

k

38 / 46

Retrieving data

1. Find closest nodes of the speci�ed identi�er using FIND_VALUE(key).

2. Halt procedure immediately whenever the set of closest nodes doesn't
change or a value is returned.

k

39 / 46

Retrieving data

1. Find closest nodes of the speci�ed identi�er using FIND_VALUE(key).

2. Halt procedure immediately whenever the set of closest nodes doesn't
change or a value is returned.

For caching purposes, once a lookup succeeds, the requesting node stores the
key-value pair at the closest node it observed to the key that did not return the
value.

Because of the unidirectionality of the topology (requests will usually follow
the same path), future searches for the same key are likely to hit cached
entries before querying the closest node.

Induces problem with popular keys: over-caching at many nodes.

Solution: Set expiration time inversely proportional to the distance between
the true identi�er and the current node identi�er.

k

39 / 46

Join

Straightforward approach compared to other implementations.

1. Node initializes it's k-bucket (empty).

2. A node connects to an already participating node .

3. Node then performs a node-lookup for its own identi�er.

Yielding the closest nodes.

By doing so inserts itself in other nodes -buckets (see later).

Note: The new node should store keys which are the closest to its own identi�er
by obtaining the -closest nodes.

n

n j

n

k

n k

k

40 / 46

Leave and failures

Leaving is very simple as well. Just disconnect.

Failure handling is implicit in Kademlia due to data persistence.

No special actions required by other nodes (failed node will just be removed
from the k-bucket).

41 / 46

Routing table
The routing table is an (unbalanced) binary tree whose leaves are -buckets.

Every -bucket contains some nodes with a common pre�x.

The shared pre�x is the -buckets position in the binary tree.

Thus, a -buckets covers some range of the 160 bit identi�er space.

All -buckets cover the complete identi�er space with no overlap.

k

k

k

k

k

42 / 46

Dynamic construction of the routing table

The routing tables are allocated dynamically as node receive requests.

A bucket is split whenever the -bucket is full and the range includes the

node's own identi�er.

k

43 / 46

Example

 (no asynchronous requests, also no asynchronous pings)

Node identi�er (000000) is not in the routing table

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011
000001

k-buckets

k = 2

α = 1

44 / 46

Node 000111 is involved with an RPC request, what happens?

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011
000001

000111

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011
000001

000111

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011
000001

000111

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011
000001

000111

Full
Node is within identifier range: split

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

000111

1 0

000001
000111

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

1 0

000001
000111

44 / 46

A new node 011000 is involved with a RPC message.

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

011000

1 0

000001
000111

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

011000

1 0

000001
000111

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

011000

1 0

000001
000111

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

011000

1 0

000001
000111

Full!
Not in node's identifier range. No split!

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

011000

1 0

000001
000111

PING 011011

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
010000

001011

011000

1 0

000001
000111

011011 RESPONDS

44 / 46

Node: 000000

1 0

111001
101111 1 0

010000
011011

001011

011000

1 0

000001
000111

MOVE 011011 TO BACK

44 / 46

Node: 000000

1 0

111001
101111 1 0

010000
011011

001011

011000

1 0

000001
000111010000 NO RESPONSE (TIMEOUT)

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
011000

001011

011000

1 0

000001
000111REPLACE 010000

44 / 46

Node: 000000

1 0

111001
101111 1 0

011011
011000

001011

1 0

000001
000111

44 / 46

Summary
Ef�cient, guaranteed look-ups

XOR-based metric topology (provable consistency and performance).

Possibly latency minimizing (by always picking the lowest latency note when
selecting nodes).

Lookup is iterative, but concurrent ().

Kademlia protocol implicitly enables data persistence and recovery, no
special failure mechanisms requires.

Flexible routing table robust against DoS (route table �ushing).

O(logN)

α

α

45 / 46

The end.

45 / 46

References
Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001).
Chord: A scalable peer-to-peer lookup service for internet applications. ACM
SIGCOMM Computer Communication Review, 31(4), 149-160.

Maymounkov, P., & Mazieres, D. (2002, March). Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop on
Peer-to-Peer Systems (pp. 53-65). Springer, Berlin, Heidelberg.

46 / 46

