
Large-scale Data Systems
Lecture 6: Distributed �le systems

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 47

http://localhost:8001/g.louppe@uliege.be

Today
Google File System (GFS)

Design considerations

Data replication

Reading and writing

Recovery from failure

Other distributed �le systems

2 / 47

3 / 47

Google File System

4 / 47

File systems
File systems determine how data is stored and retrieved.

Distributed �le systems (DFS) manage the storage across a network of
machines.

Goal: provide the illusion of a single-system for users.

Added complexity due to the network.

GFS and HDFS are examples of distributed �le systems.

They represent one way (not the way) to design a distributed �le system.

Exercise
Which �le systems do you know?

5 / 47

How would you design a DFS?

We want single-system illusion for
data storage, but

data is too large be stored in a
single machine;

hardware will eventually fail.

Google's �rst servers

6 / 47

History
GFS was developed at Google around 2003, jointly with MapReduce.

Provide ef�cient and reliable access to data.

Use large clusters of commodity hardware.

Proprietary system, but detailed description.

7 / 47

Design aims
Maintain data and system availability.

Handle failures gracefully and transparently.

Low synchronization overhead between entities.

Exploit parallelism of numerous entities.

Ensure high sustained throughput for individual reads/writes.

8 / 47

Assumptions
Hardware failures are common.

We want to use cheap commodity hardware.

Files are large (multi-GB �les are the norm) and their number is (relatively)
limited (millions).

Reads:

large streaming reads (1MB in size), or

small random reads

Writes:

Large sequential writes that append to �les.

Concurrent appends by multiple clients.

Once written, �les are seldom modi�ed (append) again.

Random modi�cation in �les is possible, but not ef�cient in GFS.

High sustained bandwidth, but high latency.

≥

≠

9 / 47

Which of those �t the assumptions?

Global company dealing with the data of its 100M employees.

A search engine's query log.

A hospital's medical imaging data generated from an MRI scan.

Data sent by the Hubble telescope.

A search engine's index (used to serve search results to users).

10 / 47

Disclaimer

GFS is not a good �t for:

Low latency data access (in the ms range).

Solution: distributed databases.

Many small �les.

Constantly changing data.

11 / 47

Architecture

A single master node.

Many chunkservers (100s - 1000s) storing the data, physically spread in
different racks.

Many clients.

Exercise
Why spreading across racks?

12 / 47

Files

A single �le may contain several objects (e.g., images, web pages, etc).

Files are divided into �xed-size chunks.

Each chunk is identi�ed by a globally unique 64 bit chunk handle.

Chunkservers store chunks on local disks as plain Linux �les.

Read or write data speci�ed by a pair (chunk handle, byte range).

By default three replicas of a chunk stored across chunkservers.

13 / 47

Master
The master node stores and maintains all �le system metadata:

Three main types of metadata:

the �le and chunk namespaces,

the mapping from �les to chunks,

the locations of each chunk's replicas.

All metadata is kept in master's memory (fast random access).

Sets limits on the entire system's capacity.

It controls and coordinates system-wide activities:

Chunk lease management

Garbage collection of orphaned chunks

Chunk migration between chunkservers

Heartbeat messages between master and chunkservers.

To detect failures

To send instructions and collect state information

An operation log persists master's state to permanent storage.

In case master crashes, its state can be recovered (more later).

14 / 47

One node to rule them all

Having a single master node vastly simpli�es the system design.

Enable master to make sophisticated chunk placement and replication
decisions, using global knowledge.

Its involvement in reads and writes should be minimized so as to avoid that it
becomes a bottleneck.

Clients never read and write �le data through master.

Instead, clients ask the master which chunkservers it should contact.

Exercise
As the cluster grows, can the master become a bottleneck?

15 / 47

Chunks
Default size = 64MB.

This a key design parameter in GFS!

Advantages of large (but not too large) chunk size:

Reduced need for client/master interaction.

1 request per chunk suits the target workloads.

Client can cache all the locations for a multi-TB working set.

Reduced size of metadata on master (kept in memory).

Disadvantage:

A chunkserver can become a hotspot for popular �les.

Exercise

How to �x the hotspot problem?

What if a �le is larger than the chunk size?

16 / 47

Caching
Design decisions:

Clients do not cache �le data.

They do cache metadata.

Chunckservers do not cache �le data.

Responsibility of the underlying �le system (e.g., Linux's buffer cache).

Client caches offer little bene�t because most applications

stream through huge �les

disk seek time negligible compared to transfer time.

have working sets too large to be cached.

Not having a caching system simpli�es the overall system by eliminating
cache coherence issues.

17 / 47

API
No �le system interface at the operating-system level (e.g., under the VFS layer).

User-level API is provided instead.

Does not support all the features of POSIX �le system access.

But looks similar (i.e., open, close, read, write, ...)

Two special operations are supported:

Snapshot: ef�cient way of creating a copy of the current instance of a �le or
directory tree.

Append: append data to a �le as an atomic operation, without having to lock
the �le.

Multiple processes can append to the same �le concurrently without overwriting one another's
data.

18 / 47

Read

1) The GFS client translates �lename and byte offset speci�ed by the application
into a chunk index within the �le. A request is sent to master.

19 / 47

2) Master replies with chunk handle and locations of the replicas.

20 / 47

3) The client caches this information using the �le name and chunk index as the
key.

Further reads of the same chunk requires no more client-master interaction,
until the cached information expires.

4) The client sends a request to one of the replicas, typically the closest.

21 / 47

5) The contacted chunkserver replies with the data.

22 / 47

Leases

A mutation is an operation that changes the content or metadata of a chunk
(e.g., write and append).

Each mutation is performed at all the chunk's replicas.

Leases are used to maintain a consistent mutation order across replicas.

Master grants a chunk lease to one of the replicas, called the primary.

Leases are renewed using the periodic heartbeat messages between master and chunkservers.

The primary picks a serial order for all mutations to the chunk.

All replicas follow this order when applying mutations.

Leases and serial order at the primary de�ne a global ordering of the
operations on a chunk.

23 / 47

Write

1) The GFS client asks master for the primary and the secondary replicas for each
chunk.

2) Master replies with the locations of the primary and secondary replicas. This
information is cached.

24 / 47

3) The client pushes the data to all replicas.

Each chunkserver stores the data in an internal buffer.

Each chunkserver sends back an acknowledgement to the client once the
data is received.

Data �ow is decoupled control �ow.

25 / 47

4) Once all replicas have acknowledged, a write request is sent to the primary.

This request identi�es the data pushed earlier.

The primary assigns consecutive serial numbers to all the mutations it
receives, possibly from multiple clients.

This provides ordering and consistency.

The primary applies the mutations, in the chosen order, to its local state.

26 / 47

5) The primary forwards the write request to all secondary replicas.

Mutations are applied locally in the serial order decided by the primary.

27 / 47

6) The secondaries all reply to the primary upon completion of the operation.

7) The primary replies to the client.

Errors may be reported to the client.

Upon errors, the client request is considered to have failed.

The modi�ed region is left in an inconsistent state.

The client handles errors by retrying the failed mutation.

28 / 47

Append

Google uses large �les as queues between multiple producers and
consumers.

Same control �ow as for writes, except that:

Client pushes data to replicas of last chunk of �le.

Client send an append request to the primary.

The request �ts in current last chunk:

Primary appends data to own replica.

Primary tells secondaries to do same at same byte offset in theirs.

Primary replies with success to client, specifying the offset the data was written.

When the data does not �t in last chunk:

Primary �lls current chunk with padding.

Primary tells secondaries to do the same.

Primary replies to client to retry on next chunk.

If a record append fails at any replica, the client has to retry the operation.

Replicas of same chunk may not be bytewise identical!

29 / 47

Consistency model
Changes to metadata are always atomic.

Guaranteed by having a single master server.

Mutations are ordered as chosen by a primary node.

All replicas will be consistent if they all successfully perform mutations in the same order.

Multiple writes from the same client may be interleaved or overwritten by concurrent operations
from other clients.

i.e., a �le region is de�ned only if client see mutations in entirety, it is unde�ned otherwise. However, the �le
region remains consistent.

Record append completes at least once, at offset of GFS's choosing.

There might be duplicate entries.

Failures can cause inconsistency.

30 / 47

Replica placement
Policy is to maximize:

data reliability and availability,

network bandwidth utilization.

Chunks are created initially empty.

Preferably create chunks at under-utilized chunkservers, spread across different racks.

Limit number of recent creations on each chunk server.

Re-replication.

Started once the available replicas fall below a user-de�ned threshold.

Master instructs chunkserver to copy chunk data directly from existing valid replica.

Number of active clone operations/bandwidth is limited.

Re-balancing

Changes in replica distribution for better load balancing.

New chunk servers are gradually �lled.

31 / 47

Garbage collection
How can a �le be deleted from the cluster?

Deletion is logged by master.

The �le is renamed to a hidden �le and the deletion timestamp is kept.

Periodic scan of the master's �le system namespace.

Hidden �les older than 3 days are deleted from master's memory.

I.e., there is no further connection between a �le and its chunks.

Periodic scan of the master's chunk namespace.

Orphaned chunks (not reachable from any �le) are identi�ed and their metadata is deleted.

Hearbeat messages are used to synchronize deletion between master and
chunkservers.

32 / 47

Stale replica detection
Scenario: a chunkserver misses a mutation applied to a chunk (e.g., a chunk was
appended).

Master maintains a chunk version number to distinguish up-to-date and stale
replicas.

Before an operation on a chunk, master ensures that the version number
advances.

Each time master grants new lease, the version is incremented and informed to all replicas.

Stale replicas are removed in the regular garbage collection cycle.

33 / 47

Operation log
The operation log is a persistent historical record of critical changes on
metadata.

Critical to the recovery of the system, upon restart of master.

Master recovers its �le system state by replaying the operation log.

Master periodically checkpoints its state to minimize startup time.

Changes to metadata are only made visible to the clients after they have
been written to the operation log.

The operation log is replicated on multiple remote machines.

Before responding to a client operation, the log record must have been �ushed locally and
remotely.

Serve as a logical timeline that de�nes the order of concurrent operations.

34 / 47

Chunk locations
Master does not keep a persistent record of chunk replica locations.

Instead, it polls chunkservers about their chunks at startup.

Master keeps up to date through hearbeat messages.

A chunkserver has the �nal word over what chunks it stores.

Exercise
What does this design decision simplify?

35 / 47

What if master fails?
... and does not recover?

This represents a single point of failure of system.

Solution:

Maintain shadow read-only replicas of master.

Use these replicas in case master fails.

Eventually elect a new leader if master never recovers.

36 / 47

What if a chunkserver fails?
Master notices missing hearbeats.

Master decrements count of replicas for all chunks on dead chunkserver.

Master re-replicates chunks missing replicas.

Highest priority for chunks missing greatest number of replicas.

37 / 47

Data corruption
Data corruption or loss can occur at any time.

Chunkservers use checksums to detect corruption of stored data.

Alternative: compare replicas across chunk servers.

A chunk is broken into 64KB blocks, each has a 32bit checksum.

These are kept in memory and stored persistently.

Read requests: the chunkserver veri�es the checksum of the data blocks that
overlap with the read range.

Corrupted data are not sent to the clients.

Exercise
What if a read request fails because of corrupted data?

38 / 47

Performance
Reads

39 / 47

Writes

40 / 47

Appends

41 / 47

Summary
GFS has been used actively by Google to support search service and other
applications.

Availability and recoverability on cheap hardware.

High throughput by decoupling control and data.

Supports massive data sets and concurrent appends.

Semantics not transparent to applications.

Must verify �le contents to avoid inconsistent regions, repeated appends (at-least-once
semantics).

Performance not good for all applications.

Assumes read-once, write-once workload (no client caching!)

Replaced in 2010 by Colossus

Eliminate master node as single point of failure

Targets latency problems due to more latency sensitive applications

Reduce block size to be between 1~8 MB

Few public details.

42 / 47

Other distributed �le systems

43 / 47

HDFS
Hadoop Distributed File System (HDFS) is an open source distributed �le
system.

HDFS shares the same goals as GFS.

HDFS's design is strongly inspired from GFS.

HDFS uses a distributed cache.

No leases (client decides where to write).

Used by Facebook, Yahoo, IBM, etc.

44 / 47

HDFS in one �gure

45 / 47

In the cloud

46 / 47

The end.

46 / 47

References
Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google �le
system." ACM SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.

Shvachko, Konstantin, et al. "The hadoop distributed �le system." Mass
storage systems and technologies (MSST), 2010 IEEE 26th symposium on.
IEEE, 2010.

Claudia Hauff. "Big Data Processing, 2014/15. Lecture 5: GFS and HDFS".

47 / 47

