
Large-scale Data Systems
Lecture 5: Consensus

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 69

http://localhost:8001/g.louppe@uliege.be

Today
Most important abstraction in distributed systems: consensus.

Builds upon broadcast and failure detectors.

From consensus, we will build:

total order broadcast

replicated state machines

... and almost all higher level distributed fault-tolerant applications!

2 / 69

3 / 69

Consensus

4 / 69

Consensus is the problem of making processes all agree on one of the values they
propose.

How do we reach an agreement?

5 / 69

Motivation

Solving consensus is key to solving many problems in distributed computing:

synchronizing replicated state machines;

electing a leader;

managing group membership;

deciding to commit or abort distributed transactions.

Any algorithm that helps multiple processes maintain common state or to decide
on a future action, in a model where processes may fail, involves solving a
consensus problem.

6 / 69

Consensus

Exercise
Which is safety, which is liveness?

7 / 69

Sample execution

Exercise
Does this satisfy consensus?

8 / 69

Uniform consensus

9 / 69

Sample execution

Exercise
Does this satisfy uniform consensus?

10 / 69

11 / 69

Are we done then? No!

The FLP impossibility result holds for asynchronous systems only.

Consensus can be implemented in synchronous and partially synchronous
systems. (We will prove it!)

The result only states that termination cannot be guaranteed.

Can we have other guarantees while maintaining a high probability of termination?

12 / 69

Consensus in fail-stop

13 / 69

Hierarchical consensus
Asumptions

Assume a perfect failure detector (synchronous system).

Assume processes form an ordered hierarchy as given by .

 is a unique number between and (e.g., the pid).

1, ...,N rank(p)
rank(p) 1 N

14 / 69

Algorithm

Hierarchical consensus ensures that the correct process with the lowest rank
imposes its value on all the other processes.

If is correct and rank , it imposes its values on all other processes by broadcasting its proposal.

If crashes immediately and is correct and rank 2, then it ensures that 's proposal is decided.

The core of the algorithm addresses the case where is faulty but crashes after sending some of

its proposal messages and is correct.

Hierarchical consensus works in rounds, with a rotating leader.

At round , process with rank is the leader.

It decides its proposal and broadcasts it to all processes.

All other processes that reach round wait before taking any actions, until they deliver this

message or until they detect the crash of .

upon which processes move to the next round.

p 1

p q q

p

q

i p i

i

p

15 / 69

16 / 69

Execution without failure

17 / 69

Execution with failure (1)

Exercise

Uniform consensus?

How many failures can be tolerated?

18 / 69

Execution with failure (2)

19 / 69

Correctness

Termination: Every correct process eventually decides some value.

Every correct node makes it to the round it is leader in.

If some leader fails, completeness of the FD ensures progress.

If leader correct, validity of BEB ensures delivery.

Validity: If a process decides , then was proposed by some process.

Always decide own proposal or adopted value.

Integrity: No process decides twice.

Rounds increase monotonically.

A node only decides once in the round it is leader.

Agreement: No two correct processes decide differently.

Take correct leader with minimum rank .

By termination, it will decide .

It will BEB :

Every correct node gets and adopts it.

No older proposals can override the adoption.

All future proposals and decisions will be .

v v

i

v

v

v

v

20 / 69

Hierarchical uniform consensus
Same as hierarchical consensus, but must ensure uniform agreement.

A round consists of two communication steps:

The leader BEB broadcasts its proposal

The leader collects acknowledgements

Upon reception of all acknowledgements, RB broadcast the decision and
decide at delivery.

This ensures that if a decision is made (at a faulty or correct process), then this decision will be
made at all correct processes.

Processes proceed to the next round only if the current leader fails.

21 / 69

22 / 69

23 / 69

Consensus in fail-noisy

24 / 69

Would hierarchical consensus work with an eventually perfect failure detector?

A false suspicion (i.e., a violation of strong accuracy) might lead to the
violation of agreement.

Not suspecting a crashed process (i.e., a violation of strong completeness)
might lead to the violation of termination.

25 / 69

Towards consensus...

We will build a consensus component in fail-noisy by combining three
abstractions:

1. an eventual leader detector

2. an epoch-change abstraction

3. an epoch consensus abstraction

26 / 69

Eventual leader detector ()

Exercise
This abstraction can be implemented from an eventually perfect failure
detector. How?

Ω

27 / 69

Epoch-Change ()
Let us de�ne an Epoch-Change abstraction, whose purpose it is to signal a
change of epoch corresponding to the election of a leader.

An indication event StartEpoch contains:

an epoch timestamp

a leader process .

ec

ts

l

28 / 69

29 / 69

Leader-based Epoch-Change
Every process maintains two timestamps:

a timestamp of the last epoch that it locally started;

a timestamp of the last epoch it attempted to start as a leader.

When the leader detector makes trust itself, adds to and broadcasts

a NewEpoch message with .

When receives a NewEpoch message with parameter from

 and most recently trusted , then triggers a StartEpoch message.

Otherwise, informs the aspiring leader with a NACK that a new epoch could

not be started.

When receives a NACK and still trusts itself, it increments by and tries

again to start a new epoch.

p

lastts

ts

p p N ts

ts

p newts > lastts

l p l p

p l

l ts N

30 / 69

31 / 69

Sample execution (1)

32 / 69

Sample execution (2)

33 / 69

Exercise

What if fails only later, some time after the second bebDeliver event?

What if instead of crashing, eventually trusts ?

Could and keep bouncing NACKs to each other?

p1

p1 p2

p1 p2

34 / 69

Epoch consensus ()
Let us de�ne an epoch consensus abstraction, whose purpose is similar to
consensus, but with the following simpli�cations:

Epoch consensus represents an attempt to reach consensus.

The procedure can be aborted when it does not decide or when the next epoch should already be started by
the higher-level algorithm.

Every epoch consensus instance is identi�ed by an epoch timestamp and a designated leader .

Only the leader proposes a value. Epoch consensus is required to decide only when the leader is
correct.

An instance must terminate when the application locally triggers an Abort

event.

The state of the component is initialized

with a higher timestamp than that of all instances it initialized previously;

with the state of the most recently locally aborted epoch consensus instance.

ep

ts l

35 / 69

36 / 69

37 / 69

Read/Write Epoch consensus
Let us initialize the Read/Write Epoch consensus algorithm with the state of
the most recently aborted epoch consensus instance.

The state contains a proposal and its associated timestamp .

Passing the state to the next epoch consensus serves the validity and lock-in properties.

The algorithm involves two rounds of messages from the leader to all
processes.

The leader writes its proposal value to all processes, who store the epoch timestamp and the
value in their state, and acknowledge this to the leader.

When the leader receives enough acknowledgements, it decides this value.

However, if the leader of some previous epoch already decided some value , then no other

value should be decided (to not violate lock-in).

To prevent this, the leader �rst reads the state of the processes, which return State messages.

The leader receives a quorum of State messages and choses the value that comes with the

highest timestamp, if one exists.

The leader decides and broadcasts its decision to all processes, which then decide too.

val valts

val

38 / 69

39 / 69

40 / 69

Sample execution (1)

41 / 69

Sample execution (2)

42 / 69

Sample execution (3)

Exercise
What is wrong in this execution?

43 / 69

Sample execution (4a)

44 / 69

Sample execution (4b)

45 / 69

Correctness

Assume a majority of correct processes, i.e. , where is the number of

crash faults.

Lock-in: If a correct process has ep-decided in an epoch consensus with

timestamp , then no correct process ep-decides a value different

from .

If some process ep-decided at , then it decided after receiving a Decided message

with from leader of epoch .

Before sending this message, had broadcast a Write containing and collected Accept

messages.

These responding processes set their variables to and to .

At the next epoch, the leader sent a Write message with the previous pair and collected

Accept messages.

This pair has the highest timestamp with a non-null value.

This implies that the leader of this epoch can only ep-decides .

This argument can be continued until , establishing lock-in.

N > 2f f

v

ts ≤ ts′

v

v ts < ts′

v l′ ts′

l′ v

val v valts ts′

(ts , v)′

v

ts

46 / 69

Validity: If a correct process ep-decides , then was ep-proposed by the

leader of some epoch consensus with timestamp and leader .

If some process ep-decides , it is because this value was delivered from a Decided message.

Furthermore, every process stores in only the value received in a Write message from the

leader.

In both cases, this value comes from tmpval of the leader.

In any epoch, the leader sets tmpval only to the value it ep-proposed or to some value it received

in a State message from another process.

By backward induction, was ep-proposed by the leader in some epoch .

Uniform agreement + integrity: No two processes ep-decide differently +
Every correct process ep-decides at most once.

 sends the same value to all processes in the Decided message.

Termination: If the leader is correct, has ep-proposed a value, and no correct

process aborts this epoch consensus, then every correct process eventually
ep-decides some value.

When is correct and no process aborts the epoch, then every process eventually receives a

Decide message and ep-decides.

v v

l′ ts ≤ ts′ l′

v

val

v ts ≤ ts′

l

l

l

47 / 69

Leader-Driven consensus
Let us now combine the epoch-change and the epoch consensus
abstractions to form the leader-driven consensus algorithm.

We will write the glue to repeatedly run epoch consensus until epoch
changes stabilize and all decisions are taken.

The algorithm provides uniform consensus in fail-noisy.

48 / 69

Leader-driven consensus runs through a sequence of epochs, triggered by
StartEpoch events from the epoch-change primitive:

The current epoch timestamp is and the associated leader is .

The StartEpoch events determine the timestamp and the leader

 of the next epoch consensus instance to start.

To switch from one epoch consensus to the next, the algorithm aborts the
running epoch consensus instance, obtains its state and initializes the next
epoch consensus instance with it.

As soon as a process has obtained a proposal value for consensus and is the

leader of the current epoch, it ep-proposes this value for epoch consensus.

When the current epoch ep-decides a value, the process also decides this
value for consensus.

The process continue to participate in the consensus to help other processes
decide.

ets l

newts

newl

v

49 / 69

50 / 69

51 / 69

Sample execution

52 / 69

Correctness

Validity: If a process decides , then was proposed by some process.

A process uc-decides only when it has ep-decided in the current epoch consensus.

Every decision can be attributed to a unique epoch and to a unique instance of epoch consensus.

Let be the smallest timestamp of an epoch consensus in which some process decides .

According to the validity property of epoch consensus, this means was ep-proposed by the

leader of some epoch whose timestamp is a most .

Since a process only ep-proposes when has been uc-proposed for consensus, the

validity property follows for processes that uc-decide in epoch .

The argument extends to because the lock-in property of epoch consensus forces

processes to ep-decide only, which in turn make them uc-decide.

v v

v v

ts∗ v

v

ts∗

val val

ts∗

ts > ts∗

v

53 / 69

Uniform agreement: No two processes decide differently.

Every decision attributed to an ep-decision of some epoch consensus instance.

If two correct processes decide when they are in the same epoch, then the uniform agreement of
epoch consensus ensures the decisions are the same.

If they decide in different epoch, the lock-in property establishes uniform agreement.

54 / 69

Integrity: No process decides twice.

The decided �ag in the algorithm prevents multiple decisions.

Termination: Every correct process eventually decides some value.

Because of eventual leadership of the epoch-change primitive, there is some epoch with

timestamp and leader such that no further epoch starts and is correct.

From that instant, no further abortions are triggered.

The termination property of epoch consensus ensures that every correct process eventually ep-
decides, and therefore uc-decides.

ts l l

55 / 69

Paxos
Leader-driven consensus is a modular formulation of the
Paxos consensus algorithm by Leslie Lamport.

56 / 69

Paxos Agreement - ComputerphilePaxos Agreement - Computerphile
Watch laterWatch later ShareShare

57 / 69

https://www.youtube.com/watch?v=s8JqcZtvnsM
https://www.youtube.com/channel/UC9-y-6csu5WGm29I7JiwpnA

Total order broadcast

58 / 69

Total order broadcast ()
The total-order (reliable) broadcast (also known as atomic broadcast)
abstraction ensures that all processes deliver the same messages in a
common global order.

Total-order broadcast is the key abstraction for maintaining consistency
among multiple replicas that implement one logical service.

tob

59 / 69

60 / 69

Consensus-based TOB
Messages are �rst disseminated using a reliable broadcast instance.

No particular order is imposed on the messages.

At any point in time, it may be that no two processes have the same sets of unordered messages.

The processes use consensus to decide on one set of messages to be
delivered, order the messages in this set, and �nally deliver them.

61 / 69

62 / 69

Sample execution

63 / 69

Replicated state machines ()
A state machine consists of variables and commands that transform its state
and produce some output.

Commands are deterministic programs, such that the outputs are solely
determined by the initial state and the sequence of commands.

A state machine can be made fault-tolerant by replicating it on different
processes.

This can now be easily implemented simply by disseminating all commands to
execute using a uniform total-order broadcast primitive.

This gives a generic recipe to make any deterministic program distributed,
consistent and fault-tolerant!

rsm

64 / 69

65 / 69

66 / 69

TOB-based Replicated state
machines

67 / 69

Summary
Consensus is the problem of making processes all agree on one of the values
they propose.

The FLP impossibility result states that no consensus protocol can be proven
to always terminate in an asynchronous system.

In fail-stop, Hierarchical Consensus provides an implementation based on
broadcast and failure detection.

In fail-noisy, Leader-Driven Consensus achieves consensus by repeatedly
running epoch consensus until all decisions are taken.

The consensus primitive greatly simpli�es the implementation of any fault-
tolerant consistent distributed system.

Total-order broadcast

Replicated state machines

68 / 69

The end.

68 / 69

References
Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. "Impossibility of
distributed consensus with one faulty process." Journal of the ACM (JACM)
32.2 (1985): 374-382.

Lamport, Leslie. "The part-time parliament." ACM Transactions on Computer
Systems (TOCS) 16.2 (1998): 133-169.

Lamport, Leslie. "Paxos made simple." ACM Sigact News 32.4 (2001): 18-25.

69 / 69

