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Today

Towards a distributed �le system.

How do you share resources between processes?

Can we build the illusion of single storage?

While replicating data for fault-tolerance and scalability?

While maintaining consistency?
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Shared memory

In a multiprocessor machine, processors typically communicate through shared
memory provided at the hardware level (e.g., shared blocks of RAM that can be
accessed by distinct CPUs).

Shared memory can be viewed as an array of registers to which processors
can read or write.

Shared memory systems are easy to program since all processors share a
single view of the data.
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Shared memory emulation

We want to simulate a shared memory abstraction in a distributed system, on top
of message passing communication.

Enable shared memory algorithms without being aware that processes are
actually communicating by exchanging messages.

This is often much easier to program.

Equivalent to consistent data replication across nodes.
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Data replication

Shared data allows to:

Reduce network traf�c

Promote increased parallelism

Be robust against failures

Result in fewer page faults

Applications:

distributed databases

distributed �le systems

distributed cache

Challenges:

Consistency in presence of failures.

Consistency in presence of concurrency.
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Regular registers
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Read/Write registers
A register represents each memory location.

A register contains only positive integers and is initialized to .

Registers have two operations:

: return the current value of the register.

: update the register to value .

An operation is not instantaneous:

It is �rst invoked by the calling process.

It computes for some time.

It returns a response upon completion.

0

read()

write(v) v
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De�nitions

In an execution, an operation is

completed if both invocation and response occurred.

failed if invoked but not no response was received.

Operation  precedes  if response of  precedes the invocation of .

Operations  and  are concurrent if neither precedes the other.

-register: 1 designated writer,  readers.

-register:  writers,  readers.

o1 o2 o1 o2

o1 o2

(1,N) N

(M ,N) M N
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Regular registers ( )onrr
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Regular register example (1)

Exercise
Regular or non-regular?
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Regular register example (2)

Exercise
Regular or non-regular?

12 / 46



Regular register example (3)

Exercise
Regular or non-regular?
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Centralized algorithm

Designates one process as the leader.

E.g., using the leader election abstraction (see Lecture 2).

To :

Ask the leader for latest value.

To :

Update leader's value to .

Exercise
What is the issue with this algorithm?

read()

write(v)
v
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Decentralized algorithm (bogus)

Intuitively, make an algorithm in which

A  reads the local value.

A  writes to all nodes.

To :

Return local value.

To :

Update local value to .

Broadcast  to all (each node then locally updates).

Return.

Exercise
What is the issue with this algorithm?

read()

write(v)

read()

write(v)
v

v
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Validity is violated!
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Read-one Write-all algorithm
Bogus algorithm modi�ed.

To :

Return local value.

To :

Update local value to .

Broadcast  to all (each node locally updates).

Wait for acknowledgement from all correct nodes.

Require a perfect failure detector (fail-stop).

Return.

read()

write(v)
v

v
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Read-one Write-all example

Validity is no longer violated because the write response has been postponed.
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Fail-silent algorithm

What if the failure detector is not perfect?
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Can we implement a regular register in fail-silent? (without a failure detector)

When writing, timestamp the value to be written.

Always write to a strict majority of nodes.

Always read from a strict majority of nodes, and pick the most recent value.

Then, provided that a strict majority of nodes are correct, validity is ensured.
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Quorum principle
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Majority voting algorithm
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Exercise
Why do we reset acks and readlist right after having received back just

more than  messages?N/2
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Atomic registers
Towards single storage illusion.
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Sequential consistency
An operation  locally precedes  in  if  and  occur at the same node and 

 precedes  in .

An execution  is sequentially consistent if an execution  exists such that:

 and  contain the same events;

 is sequential;

Read responses have value of the preceding write invocation in ;

If  locally precedes  in , then  locally precedes  in .

o1 o2 E o1 o2
o1 o2 E

E F

E F

F

F
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Example (1)

Sequential consistency disallows such execution.
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Example (2)

Sequential consistency allows such execution.
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Linearization
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This execution is sequentially consistent but is not linearizable!
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Linearizability:

Read operations appear as if immediately happened at all nodes at time between invocation and
response.

Write operations appear is if immediately happened at all anode at time between invocation and
response.

Failed operations appear as

completed at every node, XOR

never occurred at any node.

The hypothetical serial execution is called a linearization of the actual execution.

Termination:

If node is correct, each read and write operation eventually completes.
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Example (1)

Linearizability disallows such execution.
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Example (2)

Linearizability disallows such execution.
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 atomic registers

Exercise
Show that linearizability is equivalent to validity + ordering.

(1,N)
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Atomic register example (1)

[Q] Atomic?
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Atomic register example (2)

[Q] Atomic?
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Atomic register example (3)

[Q] Atomic?
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Regular but not atomic

[Q] Atomic? Regular?
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Implementation of  atomic

registers
When reading, write back the value that is about to be returned.

Maintain a local timestamp  and its associated value .

Overwrite the local pair only upon a write operation of a more recent value.

(1,N)

ts val
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Read-Impose Write-all algorithm
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Exercise
How to adapt to fail-silent?
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Correctness

Ordering: if a read returns  and a subsequent read returns , then the write

of  does not precede the write of .

 writes  with timestamp .

 writes  with timestamp .

 reads the value .

some time later,  invokes a read operation.

when  completes its read, all correct processes (including ) have a timestamp .

there is no way for  to changes its value back to  after this because .

Exercise
Show that the termination and validity properties are satis�ed.

v w

w v

p v tsv

p w ts > tsw v

q w

r

q r ts ≥ tsw

r v ts < tsv w
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 atomic registers(N ,N)
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How do we handle multiple writers?

Read-Impose Write-all does not support multiple writers:

Assume  and  both store the same timestamp  (e.g., because of a preceding completed

operation).

When  and  proceed to write, different values would become associated with the same

timestamp.

Fix:

Together with the timestamp, pass and store the identity  of the process that writes a value .

Determine which message is the latest

by comparing timestamps,

by breaking ties using the process IDs.

p q ts

p q

pid v
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Simulating message passing?
As we saw, we can simulate shared memory with message passing.

A majority of correct nodes is all that is needed.

Can we simulate message passing in shared memory?

Yes: use one register  for every channel.

Modeling a directed channel from  to .

Send messages by appending to the right channel.

Receive messages by busy-polling incoming "channels".

Shared memory and message passing are equivalent.

pq

p q
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Summary
Shared memory registers form a shared memory abstraction with read and
write operations.

Consistency of the data is guaranteed, even in the presence of failures and concurrency.

Regular registers:

Bogus algorithm (does not work)

Centralized algorithm (if no failures)

Read-One Write-All algorithm (fail-stop)

Majority voting (fail-silent)

Atomic registers:

Single writers

Multiple writers
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The end.
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