
Large-scale Data Systems
Lecture 3: Reliable broadcast

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 60

http://localhost:8001/g.louppe@uliege.be

Today
How do you talk to multiple machines at once?

What if some of them fail?

Can we guarantee that correct nodes all receive the same messages?

What about ordering?

What about performance?

2 / 60

3 / 60

Unreliable broadcast

Constraints

The sender may fail.

Recipients may fail.

Packets might get lost.

Packets may take long to travel.

How do we de�ne a reliable broadcast service?

4 / 60

Reliable broadcast abstractions

5 / 60

Reliable broadcast abstractions
Best-effort broadcast

Guarantees reliability only if sender is correct.

Reliable broadcast

Guarantees reliability independent of whether sender is correct.

Uniform reliable broadcast

Also considers the behavior of failed nodes.

Causal reliable broadcast

Reliable broadcast with causal delivery order.

6 / 60

Best-effort broadcast ()beb

7 / 60

 example (1)

Exercise
Is this allowed?

beb

8 / 60

 example (2)

Exercise
Is this allowed?

beb

9 / 60

Reliable broadcast ()
Best-effort broadcast gives no guarantees if sender crashes.

Reliable broadcast:

Same as best-effort broadcast +

If sender crashes, ensure all or none of the correct node deliver the message.

rb

10 / 60

11 / 60

 example (1)

Exercise
Is this allowed?

rb

12 / 60

 example (2)

Exercise
Is this allowed?

rb

13 / 60

 example (3)

Exercise
Is this allowed?

rb

14 / 60

 example (4)

Exercise
Is this allowed?

rb

15 / 60

Uniform reliable broadcast ()
Assume sender broadcasts a message

Sender fails

No correct node delivers the message

Failed nodes deliver the message

Is this OK?

A process that delivers a message and later crashes may bring the application into a inconsistent
state.

Uniform reliable broadcast ensures that if a message is delivered, by a correct
or a faulty process, then all correct processes deliver.

urb

16 / 60

17 / 60

Implementations

18 / 60

Basic broadcast

Correctness:

BEB1. Validity: If a correct process broadcasts , then every correct

process eventually delivers .

If sender does not crash, every other correct node receives message by perfect channels.

BEB2+3. No duplication + no creation

Guaranteed by perfect channels.

p m

m

19 / 60

Lazy reliable broadcast
Assume a fail-stop distributed system model.

i.e., crash-stop processes, perfect links and a perfect failure detector.

To broadcast :

best-effort broadcast

Upon bebDeliver:

Save message

rbDeliver the message

If sender crashes, detect and relay messages from to all.

case 1: get from , detect crash of , redistribute

case 2: detect crash of , get from , redistribute .

Filter duplicate messages.

m

m

s s

m s s m

s m s m

20 / 60

21 / 60

Lazy reliable broadcast example (1)

Exercise
Which case?

22 / 60

Lazy reliable broadcast example (2)

Exercise
Which case?

23 / 60

Correctness of lazy reliable broadcast

RB1-RB3

Satis�ed with best-effort broadcast.

RB4. Agreement: If a message is delivered by some correct process, then

 is eventually delivered by every correct process.

When correct delivers broadcast by

if is correct, BEB ensures correct delivery

if crashes,

 detects this (because of completeness of the PFD)

 uses BEB to ensure (BEB1) every correct node gets .

m

m

pj m pi

pi

pi

pj

pj m

24 / 60

Eager reliable broadcast
What happens if we use instead an eventually perfect failure detector?

Only affects performance, not correctness.

Can we modify Lazy RB to not use a perfect failure detector?

Assume all nodes have failed.

BEB broadcast all received messages.

25 / 60

Exercise
Show that eager reliable broadcast is correct.

26 / 60

Uniformity
Neither Lazy reliable broadcast nor Eager reliable broadcast ensure uniform
agreement.

E.g., sender immediately RB delivers and crashes. Only delivered the message.

Strategy for uniform agreement

Before delivering a message, we need to ensure all correct nodes have
received it.

Messages are pending until all correct nodes get it.

Collect acknowledgements from nodes that got the message.

Deliver once all correct nodes acked.

p p

27 / 60

All-ack uniform reliable broadcast

28 / 60

Example

29 / 60

Correctness of All-ack URB

Lemma. If a correct node BEB delivers , then eventually URB delivers .

Proof:

A correct node BEB broadcasts as soon as it gets .

By BEB1, every correct node gets and BEB broadcasts .

Therefore BEB delivers from every correct node by BEB1.

By completeness of the perfect failure detector, will not wait for dead

nodes forever.

canDeliver becomes true and URB delivers .

p m p m

p m m

m m

p

p

p m

30 / 60

URB1. Validity: If a correct process broadcasts , then delivers

If sender is correct, it will BEB delivers by validity (BEB1)

By the lemma, it will therefore eventually URB delivers .

URB2. No duplication

Guaranteed because of the delivered set.

URB3. No creation

Ensured from best-effort broadcast.

URB4. Uniform agreement: If a message is delivered by some process

(correct or faulty), then is eventually delivered by every correct process

Assume some node (possibly failed) URB delivers .

Then canDeliver was true, and by accuracy of the failure detector, every correct node has BEB delivered .

By the lemma, each of the nodes that BEB delivered will URB deliver .

p m p m

m

m

m

m

m

m

m m

31 / 60

 for fail-silent
All-ack URB requires a perfect failure detector (fail-stop).

Can we implement URB in fail-silent, without a perfect failure detector?

Yes, provided a majority of nodes are correct.

Exercise
Show that this variant is correct.

urb

32 / 60

Causal reliable broadcast

33 / 60

34 / 60

Reliable broadcast:

Exactly-once delivery: guaranteed by the properties of RB.

Order of message? Not guaranteed!

Exercise
Does uniform reliable broadcast remedy this?

35 / 60

Causal order of messages

A message may have caused another message , denoted if any

of the following relations apply:

(a) some process broadcasts before it broadcasts ;

(b) some process delivers and subsequently broadcasts ; or

(c) there exists some message such that and .

m1 m2 m → m1 2

p m1 m2

p m1 m2

m′ m → m1
′ m → m′

2

36 / 60

Causal broadcast ()crb

37 / 60

No-waiting causal broadcast

38 / 60

No-waiting CB example

The size of the message grows with time, as messages include their list of
causally preceding messages mpast.

Solution 1: Garbage collect old messages by sending acknowledgements of
delivery to all nodes and purging messages that have been acknowledged
from all.

Solution 2: History is a vector timestamp!

39 / 60

Waiting causal broadcast

40 / 60

Waiting CB example

41 / 60

Possible execution?

Exercise
Is this a valid execution? the order of delivery is not the same.

42 / 60

Probabilistic broadcast
(a.k.a. epidemic broadcast or gossiping.)

43 / 60

Scalability of reliable broadcast
In order to broadcast a message, the sender needs

to send messages to all other processes,

to collect some form of acknowledgement.

 are exchanged in total.

If is large, this can become overwhelming for the system.

Bandwidth, memory or processing resources may limit the number of
messages/acknowledgements that may be sent/collected.

Hierarchical schemes reduce the total number of messages.

This reduces the load of each process.

But increases the latency and fragility of the system.

O(N)2

N

44 / 60

Epidemic dissemination
Nodes infect each other through messages sent in rounds.

The fanout determines the number of messages sent by each node.

Recipients are drawn at random (e.g., uniformly).

The number of rounds is limited to .

Total number of messages is usually less than .

No node is overloaded.

k

R

O(N)2

45 / 60

46 / 60

Probabilistic broadcast ()pb

47 / 60

Eager probabilistic broadcast

48 / 60

The mathematics of epidemics
Assume a virus using a distributed system to propagate, with human hosts as
nodes.

Setup

Initial population of individuals.

At any time ,

 the number of susceptible individuals,

 the number of infected individuals.

 for all .

N

t

S(t) =

I(t) =

I(0) = 1

S(0) = N − 1

S(t) + I(t) = N t

49 / 60

The expected dynamics of the SIS model is given as follows:

where

 is the contact rate with whom infected individuals make contact per unit of

time.

 is the proportion of contacts with susceptible individuals for each

infected individual.

 is the probability for an infected individual to recover and switch to the

pool of susceptibles.

S(t+ 1) = S(t) − S(t)I(t) + γΔtI(t)
N

αΔt

I(t+ 1) = I(t) + S(t)I(t) − γΔtI(t)
N

αΔt

α

N

S(t)

γ

50 / 60

, , , N = 1000000 α = 5 γ = 0.5 Δt = 0.1
51 / 60

In eager reliable broadcast,

An infected node selects nodes among to send its messages.

An infected node immediately recovers.

α = k

k N

γ = 1

52 / 60

Probabilistic validity
At time , the probability of not receiving a message is

Therefore the probability of having received of one or more gossip messages up
to time , that is to have PB-delivered, is

Exercise
What if nodes fail? if packets are loss?

t

(1 −)
N

k I(t)

t

p(delivery) = 1 − (1 −)
N

k I(t)∑t =0i

t
i

53 / 60

,

p(delivery∣k, t)

N = 1000000 γ = 1.0

54 / 60

From this plot, we observe that:

Within only a few rounds (low latency), a large fraction of nodes receive the
message (reliability)

Each node has transmitted no more than messages (lightweight).kR

55 / 60

Lazy Probabilistic broadcast
Eager probabilistic broadcast consumes considerable resources and causes
many redundant transmissions.

in particular as gets larger and almost all nodes have received the message once.

Assume a stream of messages to be broadcast.

Broadcast messages in two phases:

Phase 1 (data dissemination): run probabilistic broadcast with a large probability that reliable

delivery fails. That is, assume a constant fraction of nodes obtain the message (e.g.,).

Phase 2 (recovery): upon delivery, detect omissions through sequence numbers and initiate
retransmissions with gossip.

r

ϵ

2
1

56 / 60

Phase 1: data dissemination

57 / 60

Phase 2: recovery

58 / 60

Summary
Reliable multicast enable group communication, while ensuring validity and
(uniform) agreement.

Causal broadcast extends reliable broadcast with causal ordering
guarantees.

Probabilistic broadcast enable low-latency, reliable and lightweight group
communication.

59 / 60

The end.

59 / 60

References
Allen, Linda JS. "Some discrete-time SI, SIR, and SIS epidemic models."
Mathematical biosciences 124.1 (1994): 83-105.

60 / 60

