
Large-scale Data Systems
Lecture 2: Basic distributed abstractions

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 66

http://localhost:8001/g.louppe@uliege.be

Today
De�ne basic abstractions that capture the fundamental characteristics of
distributed systems:

Process abstractions

Link abstractions

Timing abstractions

A distributed system model = a combination of the three categories of
abstractions.

2 / 66

3 / 66

Why distributed abstractions?
Reliable distributed applications need underlying services stronger than
transport protocols (e.g., TCP or UDP).

"All problems in computer science can be solved
by another level of indirection" - David Wheeler.

4 / 66

Distributed abstractions

Core of any distributed system is a set of distributed algorithms.

Implemented as a middleware between network (OS) and the application.

5 / 66

Network protocols are not enough

Communication

Reliability guarantees (e.g. with TCP) are only offered for one-to-
one communication (client-server).

How to do group communication?

High-level services

Sometimes one-to-many communication is not enough.

Need reliable higher-level services.

Strategy: build complex distributed systems in a
bottom-up fashion, from simpler ones.

6 / 66

Distributed computation

7 / 66

Distributed algorithms

A distributed algorithm is a distributed collection of

processes implemented by identical automata.

The automaton at a process regulates the way the process executes its
computation steps.

Processes jointly implement the application.

Need for coordination.

Π = {p, q, r, ...} N

8 / 66

Event-driven programming
Every process consists of modules or components.

Modules may exist in multiple instances.

Every instance has a unique identi�er and is characterized by a set of properties.

Asynchronous events represent communication or control �ow between
components.

Each component is constructed as a state-machine whose transitions are triggered by the
reception of events.

Events carry information (sender, message, etc)

9 / 66

Reactive programming model

Effectively, a distributed algorithm is described by a set of event handlers.

10 / 66

Execution

The execution of a distributed algorithm is a sequence of steps executed by
its processes.

A process step consists in

receiving a message from another process,

executing a local computation,

sending a message to some process.

Local messages between components are treated as local computation.

We assume deterministic process steps (with respect to the message
received and the local state prior to executing a step).

11 / 66

Layered modular architecture

Components can be composed locally to build software stacks.

The top of the stack is the application layer.

The bottom of the stack the transport or network layer.

Distributed programming abstraction layers are typically in the middle.

We assume that every process executes the code triggered by events in a
mutually exclusive way, without concurrently processing 2 events.≥

12 / 66

Example: Job handler

13 / 66

14 / 66

15 / 66

16 / 66

17 / 66

18 / 66

Liveness and safety
Implementing a distributed programming abstraction requires satisfying its
correctness in all possible executions of the algorithm.

i.e., in all possible interleaving of steps.

Correctness of an abstraction is expressed in terms of liveness and safety
properties.

Safety: properties that state that nothing bad ever happens.

A safety property is a property such that, whenever it is violated in some execution of an algorithm, there

is a pre�x of such that the property will be violated in any extension of .

Liveness: properties that state something good eventually happens.

A liveness property is a property such that for any pre�x of , there exists an extension of for which

the property is satis�ed.

Any property can be expressed as the conjunction of safety property and a
liveness property.

E

E ′ E E ′

E ′ E E ′

19 / 66

Example 1: Traf�c lights at an intersection

Safety: only one direction should have a green
light.

Liveness: every direction should eventually get
a green light.

20 / 66

Example 2: TCP

Safety: messages are not duplicated and received in the order they were
sent.

Liveness: messages are not lost.

i.e., messages are eventually delivered.

21 / 66

Assumptions
In our abstraction of a distributed system, we need to specify the
assumptions needed for the algorithm to be correct.

A distributed system model includes assumptions on:

failure behavior of processes and channels

timing behavior of processes and channels

22 / 66

Together, these assumptions de�ne sets of solvable problems.

23 / 66

Process abstractions

24 / 66

Process failures
Processes may fail in four different ways:

Crash-stop

Omissions

Crash-recovery

Byzantine / arbitrary

Processes that do not fail in an execution are correct.

25 / 66

Crash-stop failures

A process stops taking steps.

Not sending messages.

Not receiving messages.

We assume the crash-stop process abstraction by default.

Hence, do not recover.

[Q] Does this mean that processes are not allowed to recover?

26 / 66

Omission failures

Process omits sending or receiving messages.

Send omission: A process omits to send a message it has to send according to its algorithm.

Receive omission: A process fails to receive a message that was sent to it.

Often, omission failures are due to buffer over�ows.

With omission failures, a process deviates from its algorithm by dropping
messages that should have been exchanged with other processes.

27 / 66

Crash-recovery failures

A process might crash.

It stops taking steps, not receiving and sending messages.

It may recover after crashing.

The process emits a <Recovery> event upon recovery.

Access to stable storage:

May read/write (expensive) to permanent storage device.

Storage survives crashes.

E.g., save state to storage, crash, recover, read saved state, ...

A failure is different in the crash-recovery abstraction:

A process is faulty in an execution if

It crashes and never recovers, or

It crashes and recovers in�nitely often.

Hence, a correct process may crash and recover.

28 / 66

Byzantine failures

A process may behave arbitrarily.

Sending messages not speci�ed by its algorithm.

Updating its state as not speci�ed by its algorithm.

Might behave maliciously, attacking the system.

Several malicious nodes might collude.

29 / 66

Fault-tolerance hierarchy

30 / 66

Communication abstractions

31 / 66

Links
Every process may logically communicate with every other process (a).

The physical implementation may differ (b-d).

32 / 66

Link failures
Fair-loss links

Channel delivers any message sent, with non-zero probability.

Stubborn links

Channel delivers any message sent in�nitely many times.

Can be implemented using fair-loss links.

Perfect links (reliable)

Channel delivers any message sent exactly once.

Can be implemented using stubborn links.

By default, we assume the perfect links abstraction.

Exercise
What abstraction do UDP and TCP implement?

33 / 66

Stubborn links ()

Exercise
Which property is safety/liveness/neither?

sl

34 / 66

Perfect links ()

Exercise
Which property is safety/liveness/neither?

pl

35 / 66

Exercise
How does TCP ef�ciently maintain its delivered log?

36 / 66

Correctness of

PL1. Reliable delivery

Guaranteed by the Stubborn link abstraction. (The Stubborn link will deliver the message an
in�nite number of times.)

PL2. No duplication

Guaranteed by the log mechanism.

PL3. No creation

Guaranteed by the Stubborn link abstraction.

pl

37 / 66

Timing abstractions

38 / 66

Timing assumptions
Timing assumptions correspond to the behavior of processes and links with
respect to the passage of time. They relate to

different processing speeds of processes;

different speeds of messages (channels).

Three basic types of system:

Asynchronous system

Synchronous system

Partially synchronous system

39 / 66

Asynchronous systems
No timing assumptions on processes and links.

Processes do not have access to any sort of physical clock.

Processing time may vary arbitrarily.

No bound on transmission time.

But causality between events can still be determined.

How?

40 / 66

Causal order

The happened-before relation denotes that may have caused . It is

true in the following cases:

FIFO order: and occurred at the same process and occurred

before ;

Network order: corresponds to the transmission of at a process and

 corresponds to its reception at a process ;

Transitivity: if and , then .

e → e1 2 e1 e2

e1 e2 p e1
e2

e1 m p

e2 q

e → e1
′ e → e′

2 e → e1 2

41 / 66

42 / 66

Similarity of executions

The view of in , denoted is the subsequence of process steps in

restricted to those of

Two executions and are similar w.r.t. to if .

Two executions and are similar if for all processes .

Computation theorem

If two executions and have the same collection of events and their

causal order is preserved, then and are similar executions.

p E E∣p E

p

E F p E∣p = F ∣p

E F E∣p = F ∣p p

E F

E F

43 / 66

Logical clocks

In an asynchronous distributed system, the passage of time can be measured with
logical clocks:

Each process has a local logical clock , initially set a .

Whenever an event occurs locally at or when a process sends a message,

increments its logical clock.

When sends a message event , it timestamps the message with its

current logical time, .

When receives a message event with timestamp , updates its

logical clock.

lp 0

p p

l := l + 1p p

p m

t(m) := lp

p m t(m) p

l := max(l , t(m)) + 1p p

44 / 66

45 / 66

Clock consistency condition

Logical clocks capture cause-effect relations:

If is the cause of , then .

Can you prove it?

But not necessarily the opposite:

 does not imply .

 and may be logically concurrent.

e → e ⇒ t(e) < t(e)1 2 1 2

e1 e2 t(e) < t(e)1 2

t(e) < t(e)1 2 e → e1 2

e1 e2

46 / 66

Vector clocks

Vector clocks �x this issue by making it possible to tell when two events cannot
be causally related, i.e. when they are concurrent.

Each process maintains a vector of clocks, initially set at

.

Whenever an event occurs locally at or when a process sends a message,

increments the -th element of its vector clock.

When sends a message event , it piggybacks its vector clock as

.

When receives a message event with the vector clock , updates its

vector clock.

, for .

p Vp N V [i] = 0 ∀ip

p p

p

V [p] := V [p] + 1p p

p m V := Vm p

p m Vm p

V [p] := V [p] + 1p p

V [i] := max(V [i], V [i])p p m i ≠ p

47 / 66

48 / 66

Comparing vector clocks

iff .

iff .

iff AND

 and are logically concurrent.

iff NOT AND NOT

V = Vp q

∀i V [i] = V [i]p q

V ≤ Vp q

∀i V [i] ≤ V [i]p q

V < Vp q

V ≤ Vp q ∃j V [j] < V [j]p q

Vp Vq

V ≤ Vp q V ≤ Vq p

49 / 66

Synchronous systems
Assumption of three properties:

Synchronous computation

Known upper bound on the process computation delay.

Synchronous communication

Known upper bound on message transmission delay.

Synchronous physical clocks

Processes have access to a local physical clock;

Known upper bound on clock drift and clock skew.

Exercise
Why studying synchronous systems? What services can be provided?

50 / 66

Partially synchronous systems
A partially synchronous system is a system that is synchronous most of the time.

There are periods where the timing assumptions of a synchronous system do
not hold.

But the distributed algorithm will have a long enough time window where
everything behaves nicely, so that it can achieve its goal.

Exercise
Are there such systems?

51 / 66

Failure detection
It is tedious to model (partial) synchrony.

Timing assumptions are mostly needed to detect failures.

Heartbeats, timeouts, etc.

We de�ne failure detector abstractions to encapsulate timing assumptions:

Black box giving suspicions regarding node failures;

Accuracy of suspicions depends on model strength.

52 / 66

Implementation of failure detectors

A typical implementation is the following:

Periodically exchange hearbeat messages;

Timeout based on worst case message round trip;

If timeout, then suspect node;

If reception of a message from a suspected node, revise suspicion and
increase timeout.

53 / 66

Perfect detector ()
Assuming a crash-stop process abstraction, the perfect detector encapsulates
the timing assumptions of a synchronous system.

Exercise
Which property is safety/liveness/neither?

P

54 / 66

55 / 66

Correctness

We assume a synchronous system:

The transmission delay is bounded by some known constant.

Local processing is negligible.

The timeout delay is chosen to be large enough such that

every process has enough time to send a heartbeat message to all,

every heartbeat message has enough time to be delivered,

the correct destination processes have enough time to process the heartbeat and to send a reply,

the replies have enough time to reach the original sender and to be processed.

Δ

56 / 66

PFD1. Strong completeness

A crashed process stops replying to heartbeat messages, and no process will deliver its

messages. Every correct process will thus eventually detect the crash of .

PFD2. Strong accuracy

The crash of is detected by some other process only if does not deliver a message from

before the timeout period.

This happens only if has indeed crashed, because the algorithm makes sure must have sent a

message otherwise and the synchrony assumptions imply that the message should have been
delivered before the timeout period.

p

p

p q q p

p p

57 / 66

Eventually perfect detector ()
The eventually perfect detector encapsulates the timing assumptions of a
partially synchronous system.

⋄P

58 / 66

Exercise
Show that this implementation is correct.

59 / 66

Leader election ()
Failure detection captures failure behavior.

Detects failed processes.

Leader election is an abstraction that also captures failure behavior.

Detects correct nodes.

But a single and same for all, called the leader.

If the current leader crashes, a new leader should be elected.

le

60 / 66

61 / 66

Exercise

Show that this implementation is correct.

Is a failure detector?le

62 / 66

Distributed system models

63 / 66

Distributed system models
We de�ne a distributed system model as the combination of (i) a process
abstraction, (ii) a link abstraction, and (iii) a failure detector abstraction.

Fail-stop (synchronous)

Crash-stop process abstraction

Perfect links

Perfect failure detector

Fail-silent (asynchronous)

Crash-stop process abstraction

Perfect links

64 / 66

Fail-noisy (partially synchronous)

Crash-stop process abstraction

Perfect links

Eventually perfect failure detector

Fail-recovery

Crash-recovery process abstraction

Stubborn links

The fail-stop distributed system model substantially simpli�es the design of
distributed algorithms.

65 / 66

The end.

65 / 66

References
Alpern, Bowen, and Fred B. Schneider. "Recognizing safety and liveness."
Distributed computing 2.3 (1987): 117-126.

Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed
system." Communications of the ACM 21.7 (1978): 558-565.

Fidge, Colin J. "Timestamps in message-passing systems that preserve the
partial ordering." (1987): 56-66.

66 / 66

