Large-scale Data Systems

Lecture 2: Basic distributed abstractions

Prof. Gilles Louppe
g.louppe@uliege.be

¥ LIEGE

université

1/66

http://localhost:8001/g.louppe@uliege.be

Today

e Define basic abstractions that capture the fundamental characteristics of
distributed systems:

o Process abstractions
o Link abstractions
o Timing abstractions

e Adistributed system model = a combination of the three categories of
abstractions.

2/66

3/66

Why distributed abstractions?

Reliable distributed applications need underlying services stronger than
transport protocols (e.g., TCP or UDP).

"All problems in computer science can be solved
by another level of indirection” - David Wheeler.

4/66

Distributed abstractions

e Coreofanydistributed system is a set of distributed algorithms.

e Implemented as a middleware between network (OS) and the application.

Applications Applications

Algorithms in middleware Algorithms in middleware

Channelsin0Os [------------------1 Channels in OS5

Network protocols are not enough

e Communication

o Reliability guarantees (e.g. with TCP) are only offered for one-to-
one communication (client-server).

o Howto do group communication?

e High-level services
o Sometimes one-to-many communication is not enough.
o Need reliable higher-level services.

e Strategy: build complex distributed systemsin a
bottom-up fashion, from simpler ones.

High level services:
shared memaory
CONSENsUs
atomic commit
group membership

Group communication:
reliable broadcast
causal order broadcast
total order broadcast
terminating reliable broadcast

6/66

Distributed computation

Distributed algorithms

Processes

Communication abstraction

e Adistributed algorithm is a distributed collection IT = {p, g, 7, ...} of N
processes implemented by identical automata.

e The automaton at a process regulates the way the process executes its
computation steps.

e Processes jointly implement the application.

o Need for coordination.

8/66

Event-driven programming

e Every process consists of modules or components.
o Modules may exist in multiple instances.

o Everyinstance has a unique identifier and is characterized by a set of properties.

e Asynchronous events represent communication or control flow between
components.

o Each component is constructed as a state-machine whose transitions are triggered by the
reception of events.

o Events carry information (sender, message, etc)

9/66

Reactive programming model

upon event { co1, Event; | atty, a3, ...) do
do something;
trigger { co,, Event, | atty, att3, .. .); // send some event

upon event (co1, Events | att3, att2, ...) do
do something else;
trigger { coy, Eventy | ait}, att3, .. .); # send some other event

Effectively, a distributed algorithm is described by a set of event handlers.

10/ 66

Execution

Process

Modules of the process

(internal computation w

(receive) (send)
incoming outgoing
message message

e The execution of adistributed algorithm is a sequence of steps executed by
its processes.

e A process step consistsin
o receiving a message from another process,
o executing alocal computation,

o sending a message to some process.
e Local messages between components are treated as local computation.

e We assume deterministic process steps (with respect to the message
received and the local state prior to executing a step).

11/ 66

Layered modular architecture

Layer n+/

Request Indication

(send) (deliver)

Layer n

(invoke) (receive)

Request Indication

Layer n-1

e Components can be composed locally to build software stacks.
o Thetop of the stack s the application layer.

o The bottom of the stack the transport or network layer.
e Distributed programming abstraction layers are typically in the middle.

o We assume that every process executes the code triggered by eventsin a
mutually exclusive way, without concurrently processing > 2 events.

12/ 66

Example: Job handler

Module 1.1: Interface and properties of a job handler

Module:
Name: JobHandler, instance jh.
Events:

Request: { jh, Submit | job): Requests a job to be processed.

Indication: { jh, Confirm | job }: Confirms that the given job has been (or will be)
processed.

Properties:

JH1: Guaranteed response: Every submitted job is eventually confirmed.

Algorithm 1.1: Synchronous Job Handler

Implements:
JobHandler, instance jh.

upon event (jh, Submit | job) do
process(job);
trigger (jh, Confirm | job):

Algorithm 1.2: Asynchronous Job Handler

Implements:
JobHandler, instance jh.

upon event (jh, Init) do
buffer := 0,

upon event (jh, Submit | job) do
buffer := buffer U {job};
trigger { jh, Confirm | job);

upon buffer # () do
job := selectjob(buffer),
process(job);

buffer := buffer \ {job};

Module 1.2: Interface and properties of a job transformation and processing abstraction

Module:
Name: TransformationHandler, instance th.
Events:

Request: (th, Submit | job): Submits a job for transformation and for processing.

Indication: { th, Confirm | job): Confirms that the given job has been (or will be)
transformed and processed.

Indication:{ th, Error | job): Indicates that the transformation of the given job
failed.

Properties:

TH1: Guaranteed response: Every submitted job is eventually confirmed or its
transformation fails.

TH2: Soundness: A submitted job whose transformation fails i1s not processed.

<th,Confirm=

<th,Submit > <th,Error>

TransformationHandler
(th)

<jh,Submit> <jh,Confirm >

JobHandler
(ih)

Figure 1.3: A stack of job-transformation and job-handler modules

Algorithm 1.3: Job-Transformation by Buffering

Implements:
TransformationHandler, instance th.

Uses:
JobHandler, instance jh.

upon event (th, Init) do
top :=1;
bottom :=1;
handling := FALSE:;
buffer :=[1]M;

upon event (th, Submit | job) do
if bottom + M = top then
trigger (th, Error | job);
else
buffer[top mod M + 1] := job;
fop :=fop + 1;
trigger (th, Confirm | job);

upon bottom < top N handling = FALSE do
job = buffer[bottom mod M + 1];
bottom = bottom + 1;
handling := TRUE;
trigger (jh, Submit | job);

upon event (jh, Confirm | job) do
handling := FALSE;

Liveness and safety

e Implementing a distributed programming abstraction requires satisfying its
correctness in all possible executions of the algorithm.

o i.e,inall possible interleaving of steps.

e Correctness of an abstraction is expressed in terms of liveness and safety
properties.
o Safety: properties that state that nothing bad ever happens.

= A safety property is a property such that, whenever it is violated in some execution E of an algorithm, there
is a prefix B’ of E such that the property will be violated in any extension of E'.

o Liveness: properties that state something good eventually happens.

= A liveness property is a property such that for any prefix E’ of E, there exists an extension of £’ for which
the property is satisfied.

e Any property can be expressed as the conjunction of safety property and a
liveness property.

19/ 66

Example 1: Traffic lights at an intersection

e Safety:only one direction should have a green
light.

e Liveness: every direction should eventually get
a green light.

20/ 66

Example 2: TCP

e Safety: messages are not duplicated and received in the order they were
sent.

e Liveness: messages are not lost.

o i.e,messages are eventually delivered.

21/66

Assumptions

e |nour abstraction of a distributed system, we need to specify the
assumptions needed for the algorithm to be correct.

e Adistributed system model includes assumptions on:

o failure behavior of processes and channels

o timing behavior of processes and channels

22/66

clock synchronization

TRB

non-blocking atomic commit Synchronous aystems

Conpensus Asynchronous systeme using

Atomic Broadcast

Asynchronous systems using ©W

Asynchronous systems

Fi. 9. Problem solvability in different distributed computing models.

Together, these assumptions define sets of solvable problems.

Set of problems solvable in:

23/ 66

Process abstractions

Process failures

e Processes may fail in four different ways:

o Crash-stop
o Omissions
o Crash-recovery

o Byzantine/ arbitrary

e Processes that do not fail in an execution are correct.

25/66

Crash-stop failures

e Aprocess stops taking steps.
o Not sending messages.

o Not receiving messages.

e We assume the crash-stop process abstraction by default.
o Hence, do not recover.

o [Q] Does this mean that processes are not allowed to recover?

26/ 66

Omission failures

e Process omits sending or receiving messages.
o Send omission: A process omits to send a message it has to send according to its algorithm.

o Receive omission: A process fails to receive a message that was sent to it.
e Often, omission failures are due to buffer overflows.

e With omission failures, a process deviates from its algorithm by dropping
messages that should have been exchanged with other processes.

27/ 66

Crash-recovery failures

e Aprocess might crash.

o It stops taking steps, not receiving and sending messages.

e It may recover after crashing.

o The process emits a <Recovery> event upon recovery.

e Accessto stable storage:
o May read/write (expensive) to permanent storage device.
o Storage survives crashes.

o E.g.,savestateto storage, crash, recover,read saved state, ...

e Afailureis different in the crash-recovery abstraction:

o Aprocess is faulty in an execution if

= [t crashes and never recovers, or

= [t crashes and recovers infinitely often.

o Hence, a correct process may crash and recover.

28/ 66

Byzantine failures

e A process may behave arbitrarily.

o Sending messages not specified by its algorithm.

o Updatingits state as not specified by its algorithm.

e Might behave maliciously, attacking the system.

o Several malicious nodes might collude.

29/66

Crash-stop

Omissions

Crash-recovery

Byzantine

Fault-tolerance hierarchy

30/ 66

Communication abstractions

Links

e Every process may logically communicate with every other process (a).

e The physical implementation may differ (b-d).

R ol

32/66

Link failures

e Fair-loss links
o Channel delivers any message sent, with non-zero probability.
e Stubborn links

o Channel delivers any message sent infinitely many times.

o Can beimplemented using fair-loss links.

e Perfect links (reliable)

o Channel delivers any message sent exactly once.
o Can beimplemented using stubborn links.

o By default, we assume the perfect links abstraction.

Exercise
What abstraction do UDP and TCP implement?

33/66

Stubborn links (s!)

Module:
Name: StubbornPointToPointLinks, instance s/.
Events:

Request: { s/, Send | g, m): Requests to send message m to process g.
Indication: { s, Deliver | p, m): Delivers message m sent by process p.
Properties:

SL1: Stubborn delivery: If a correct process p sends a message m once to a correct
process ¢, then g delivers m an infinite number of times.

SL2: No creation: If some process g delivers a message m with sender p, then m
was previously sent to g by process p.

Exercise
Which property is safety/liveness/neither?

34/66

Perfect links (pl)

Module:
Name: PerfectPointToPointLinks, instance pl.
Events:

Request: { pl, Send | g, m): Requests to send message m. to process q.
Indication: (pl, Deliver | p, m): Delivers message m sent by process p.
Properties:

PL1: Reliable delivery: If a correct process p sends a message m to a correct
process ¢, then g eventually delivers m.

PL2: No duplication: No message is delivered by a process more than once.

PL3: No creation: If some process ¢ delivers a message m with sender p, then m
was previously sent to g by process p.

Exercise
Which property is safety/liveness/neither?

Implements:
PerfectPointToPointLinks, instance pl.

Uses:

StubbornPointToPointLinks, instance s/.

upon event { pl, Init) do
delivered = ;

upon event (pl, Send | g, m) do
trigger (sl, Send | q, m)

upon event { s/, Deliver | p, m) do
if m & delivered then
delivered := delivered U {m},
trigger (pl, Deliver | p, m);

Exercise

How does TCP efficiently maintain its deliveredlog?

36/66

Correctness of pl

e PL1.Reliable delivery

o Guaranteed by the Stubborn link abstraction. (The Stubborn link will deliver the message an
infinite number of times.)

e PL2.No duplication

o Guaranteed by the log mechanism.

e PL3.No creation

o Guaranteed by the Stubborn link abstraction.

37/66

Timing abstractions

Timing assumptions

e Timing assumptions correspond to the behavior of processes and links with
respect to the passage of time. They relate to

o different processing speeds of processes;

o different speeds of messages (channels).

e Three basic types of system:
o Asynchronous system
o Synchronous system

o Partially synchronous system

39/66

Asynchronous systems

e No timing assumptions on processes and links.
o Processes do not have access to any sort of physical clock.
o Processing time may vary arbitrarily.

o No bound on transmission time.

e But causality between events can still be determined.

o How?

40/ 66

Causal order

The happened-before relation e; — e2 denotes that e; may have caused es. It is
true in the following cases:

e FIFO order: e and e occurred at the same process p and e; occurred
before es;

e Network order: e; corresponds to the transmission of m at a process p and
ey corresponds to its reception at a process g;

e Transitivity:ife; — e’ ande’ — ey, thene; — es.

41/ 66

Concurrent
events

Causally-related

Similarity of executions

e Theview of pin E,denoted E|p is the subsequence of process steps in £
restricted to those of p

e Two executions F and F are similar w.rt.to pif E|p = F|p.

e Two executions E and F' are similarif E|p = F'|p for all processes p.

Computation theorem

If two executions £/ and F' have the same collection of events and their
causal order is preserved, then E and F’ are similar executions.

43/ 66

Logical clocks

In an asynchronous distributed system, the passage of time can be measured with
logical clocks:

e Each process has a local logical clock [,,, initially set a 0.

e Whenever an event occurs locally at p or when a process sends a message, p
increments its logical clock.

o lp = lp + 1
e When p sends a message event m, it timestamps the message with its

current logical time, t(m) := [,.

e When p receives a message event m with timestamp ¢(m), p updates its
logical clock.

o I, := max(l,,t(m)) +1

44/ 66

Clock consistency condition

Logical clocks capture cause-effect relations:
e — e3 = t(ey) < t(es)
e Ifep isthecauseof ez, thent(er) < t(e2).

o Canyou proveit?

e But not necessarily the opposite:
o t(e1) < t(ey) doesnotimplye; — es.

o e1 and ey may be logically concurrent.

46/ 66

Vector clocks

Vector clocks fix this issue by making it possible to tell when two events cannot
be causally related, i.e. when they are concurrent.

e Each process p maintains a vector V,, of N clocks, initially set at V,[i] = 0 V4

e Whenever an event occurs locally at p or when a process sends a message, p
increments the p-th element of its vector clock.

o Vylp] :=Vplpl +1

e When p sends a message event m, it piggybacks its vector clock as V;,, := V),

e When p receives a message event m with the vector clock V,,,, p updates its
vector clock.

o Vplp] :==V,[p] +1
o V,li] := max(V,[i], Vin[i]),fori # p.

47/ 66

[4,0,0]

i

i

i
=)
=
=3
—
=

]

[0,0,2]

[3.1,0

[0,0,1]

p2[0,0,0] -~

[3,2,3]

p3[0,00]---

48/ 66

Comparing vector clocks

e Vo =V,

o iffVi V[i] = Vi)
« Vp <V

o iffVi V,[i] < V,[i].
« Vp <V,

o iffV, < V,AND3j V,[j] < V,[j]

V) and V, are logically concurrent.

o iffNOTV,, < V, ANDNOTV, <V,

49/ 66

Synchronous systems

Assumption of three properties:

¢ Synchronous computation

o Known upper bound on the process computation delay.

e Synchronous communication

o Known upper bound on message transmission delay.

e Synchronous physical clocks
o Processes have access to a local physical clock;

o Known upper bound on clock drift and clock skew.

Exercise
Why studying synchronous systems? What services can be provided?

50/ 66

Partially synchronous systems

A partially synchronous system is a system that is synchronous most of the time.

e There are periods where the timing assumptions of a synchronous system do
not hold.

e But thedistributed algorithm will have a long enough time window where
everything behaves nicely, so that it can achieve its goal.

Exercise
Are there such systems?

51/66

Failure detection

e |tistediousto model (partial) synchrony.

e Timing assumptions are mostly needed to detect failures.

o Heartbeats, timeouts, etc.

e We define failure detector abstractions to encapsulate timing assumptions:
o Black box giving suspicions regarding node failures;

o Accuracy of suspicions depends on model strength.

52/66

Implementation of failure detectors

A typical implementation is the following:

Periodically exchange hearbeat messages;

Timeout based on worst case message round trip;

If timeout, then suspect node;

If reception of a message from a suspected node, revise suspicion and
increase timeout.

53/66

Perfect detector (P)

Assuming a crash-stop process abstraction, the perfect detector encapsulates
the timing assumptions of a synchronous system.

Module:

Name: PerfectFailureDetector, instance P.
Events:

Indication: { P, Crash | p): Detects that process p has crashed.
Properties:

PFD1: Strong completeness: Eventually, every process that crashes is permanently
detected by every correct process.

PFD2: Strong accuracy: If a process p is detected by any process, then p has
crashed.

Exercise
Which property is safety/liveness/neither?

54/ 66

Implements:
PerfectFailureDetector, instance P.

Uses:
PerfectPointToPointLinks, instance pl.

upon event { P, Init) do
alive .=IT;
detected 1= ;
starttimer(A);

upon event { Timeout) do
forall p € IT do
if (p & alive) A (p & detected) then
detected := detected U {p};
trigger (P, Crash | p);
trigger (pl, Send | p, [HEARTBEATREQUEST])
alive = :
starttimer(A);

upon event { pl, Deliver | g, [HEARTBEATREQUEST]) do
trigger (pl, Send | g, [HEARTBEATREPLY]);

upon event { pl, Deliver | p, HEARTBEATREPLY]) do
alive .= alive U {p};

Correctness

We assume a synchronous system:

e The transmission delay is bounded by some known constant.
e Local processing is negligible.

e The timeout delay A is chosen to be large enough such that
o every process has enough time to send a heartbeat message to all,
o every heartbeat message has enough time to be delivered,
o the correct destination processes have enough time to process the heartbeat and to send a reply,

o thereplies have enough time to reach the original sender and to be processed.

56/66

e PFD1.Strong completeness

o A crashed process p stops replying to heartbeat messages, and no process will deliver its
messages. Every correct process will thus eventually detect the crash of p.

e PFD2.Strong accuracy

o Thecrash of p is detected by some other process q only if g does not deliver a message from p
before the timeout period.

o This happens only if p has indeed crashed, because the algorithm makes sure p must have sent a

message otherwise and the synchrony assumptions imply that the message should have been
delivered before the timeout period.

57/66

Eventually perfect detector (¢P)

The eventually perfect detector encapsulates the timing assumptions of a
partially synchronous system.

Module:
Name: EventuallyPerfectFailureDetector, instance ©P.
Events:
Indication: { &P, Suspect | p): Notifies that process pis suspected to have crashed.
Indication: (&P, Restore | p): Notifies that process p is not suspected anymore.
Properties:

EPFD1: Strong completeness: Eventually, every process that crashes is perma-
nently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is suspected by
any correct process.

58/66

Implements:
EventuallyPerfectFailureDetector, instance <P.

Uses:
PerfectPointToPointLinks, instance pl.

upon event { &P, Init) do
alive :=1T1;
suspected := (I
delay := A;
starttimer (delay);

upon event { Timeout) do
if alive N suspected # () then
delay = delay + A,
forall p € IT do
if (p & alive) A (p & suspected) then
suspected = suspected U {p},
trigger { &P, Suspect | p);
else if (p € alive) A (p € suspected) then
suspected = suspected \ {p};
trigger (&P, Restore | p);
trigger (pl, Send | p, [HEARTBEATREQUEST] };
alive :=;
starttimer{delay);

upon event { pl, Deliver | g, [HEARTBEATREQUEST]) do

trigger (pl, Send | g, [HEARTBEATREPLY] };

upon event { pl, Deliver | p, [HEARTBEATREPLY]) do

alive :=alive U {p};

Exercise
Show that this implementation is correct.

59/66

Leader election (/¢)

e Failure detection captures failure behavior.

o Detects failed processes.

e |eaderelectionis an abstraction that also captures failure behavior.
o Detects correct nodes.

o But asingle and same for all, called the leader.

e Ifthe current leader crashes, a new leader should be elected.

60/ 66

Module:

Name: LeaderElection, instance [e.
Events:

Indication: (le, Leader | p): Indicates that process p is elected as leader.
Properties:

LE1L: Eventual detection: Either there is no correct process, or some correct process
is eventually elected as the leader.

LE2: Accuracy: If a process is leader, then all previously elected leaders have
crashed.

Implements:
LeaderElection, instance /e.

Uses:
PerfectFailureDetector, instance 7.

upon event { le, Init) do
suspected =,
leader := L

upon event { P, Crash | p) do
suspected := suspected U {p};

upon leader # maxrank(IT \ suspected) do
leader .= maxrank(IT \ suspected);
trigger (le, Leader | leader);

Exercise

e Show that this implementation is correct.

e |Is /e afailure detector?

62/66

Distributed system models

Distributed system models

We define a distributed system model as the combination of (i) a process
abstraction, (ii) a link abstraction, and (iii) a failure detector abstraction.

e Fail-stop (synchronous)
o Crash-stop process abstraction
o Perfect links

o Perfect failure detector

e Fail-silent (asynchronous)
o Crash-stop process abstraction

o Perfect links

64/ 66

e Fail-noisy (partially synchronous)
o Crash-stop process abstraction
o Perfect links

o Eventually perfect failure detector

e Fail-recovery

o Crash-recovery process abstraction

o Stubborn links

The fail-stop distributed system model substantially simplifies the design of
distributed algorithms.

65/66

The end.

65/ 66

References

e Alpern,Bowen, and Fred B. Schneider. "Recognizing safety and liveness."
Distributed computing 2.3 (1987): 117-126.

e Lamport, Leslie."Time, clocks, and the ordering of eventsin a distributed
system." Communications of the ACM 21.7 (1978): 558-565.

e Fidge, Colin J."Timestamps in message-passing systems that preserve the
partial ordering." (1987): 56-66.

66/ 66

